Publikation:

Widened Learning of Index Tracking Portfolios

Lade...
Vorschaubild

Dateien

Gavriushina_2-1m0k5nmmycukv1.pdf
Gavriushina_2-1m0k5nmmycukv1.pdfGröße: 265.79 KBDownloads: 353

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

18th IEEE International Conference On Machine Learning And Applications (ICMLA). Piscataway: IEEE, 2019, pp. 1800-1805. ISBN 978-1-72814-551-8. Available under: doi: 10.1109/ICMLA.2019.00291

Zusammenfassung

Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 16. Dez. 2019 - 19. Dez. 2019, Boca Raton, FL, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GAVRIUSHINA, Iuliia, Oliver R. SAMPSON, Michael R. BERTHOLD, Winfried POHLMEIER, Christian BORGELT, 2019. Widened Learning of Index Tracking Portfolios. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Boca Raton, FL, USA, 16. Dez. 2019 - 19. Dez. 2019. In: 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Piscataway: IEEE, 2019, pp. 1800-1805. ISBN 978-1-72814-551-8. Available under: doi: 10.1109/ICMLA.2019.00291
BibTex
@inproceedings{Gavriushina2019-12Widen-50111,
  year={2019},
  doi={10.1109/ICMLA.2019.00291},
  title={Widened Learning of Index Tracking Portfolios},
  isbn={978-1-72814-551-8},
  publisher={IEEE},
  address={Piscataway},
  booktitle={18th IEEE International Conference On Machine Learning And Applications (ICMLA)},
  pages={1800--1805},
  author={Gavriushina, Iuliia and Sampson, Oliver R. and Berthold, Michael R. and Pohlmeier, Winfried and Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50111">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.</dcterms:abstract>
    <dcterms:issued>2019-12</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50111"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sampson, Oliver R.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dc:contributor>Gavriushina, Iuliia</dc:contributor>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:title>Widened Learning of Index Tracking Portfolios</dcterms:title>
    <dc:creator>Gavriushina, Iuliia</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Sampson, Oliver R.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen