Widened Learning of Index Tracking Portfolios

Lade...
Vorschaubild
Dateien
Gavriushina_2-1m0k5nmmycukv1.pdf
Gavriushina_2-1m0k5nmmycukv1.pdfGröße: 265.79 KBDownloads: 302
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
18th IEEE International Conference On Machine Learning And Applications (ICMLA). Piscataway: IEEE, 2019, pp. 1800-1805. ISBN 978-1-72814-551-8. Available under: doi: 10.1109/ICMLA.2019.00291
Zusammenfassung

Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 16. Dez. 2019 - 19. Dez. 2019, Boca Raton, FL, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GAVRIUSHINA, Iuliia, Oliver R. SAMPSON, Michael R. BERTHOLD, Winfried POHLMEIER, Christian BORGELT, 2019. Widened Learning of Index Tracking Portfolios. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Boca Raton, FL, USA, 16. Dez. 2019 - 19. Dez. 2019. In: 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Piscataway: IEEE, 2019, pp. 1800-1805. ISBN 978-1-72814-551-8. Available under: doi: 10.1109/ICMLA.2019.00291
BibTex
@inproceedings{Gavriushina2019-12Widen-50111,
  year={2019},
  doi={10.1109/ICMLA.2019.00291},
  title={Widened Learning of Index Tracking Portfolios},
  isbn={978-1-72814-551-8},
  publisher={IEEE},
  address={Piscataway},
  booktitle={18th IEEE International Conference On Machine Learning And Applications (ICMLA)},
  pages={1800--1805},
  author={Gavriushina, Iuliia and Sampson, Oliver R. and Berthold, Michael R. and Pohlmeier, Winfried and Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50111">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.</dcterms:abstract>
    <dcterms:issued>2019-12</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50111"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sampson, Oliver R.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dc:contributor>Gavriushina, Iuliia</dc:contributor>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:title>Widened Learning of Index Tracking Portfolios</dcterms:title>
    <dc:creator>Gavriushina, Iuliia</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Sampson, Oliver R.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen