Publikation: Five-dimensional neuroimaging : localization of the time–frequency dynamics of cortical activity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The spatiotemporal dynamics of cortical oscillations across human brain regions remain poorly understood because of a lack of adequately validated methods for reconstructing such activity from noninvasive electrophysiological data. In this paper, we present a novel adaptive spatial filtering algorithm optimized for robust source time–frequency reconstruction from magnetoencephalography (MEG) and electroencephalography (EEG) data. The efficacy of the method is demonstrated with simulated sources and is also applied to real MEG data from a self-paced finger movement task. The algorithm reliably reveals modulations both in the beta band (12–30 Hz) and high gamma band (65–90 Hz) in sensorimotor cortex. The performance is validated by both across-subjects statistical comparisons and by intracranial electrocorticography (ECoG) data from two epilepsy patients. Interestingly, we also reliably observed high frequency activity (30–300 Hz) in the cerebellum, although with variable locations and frequencies across subjects. The proposed algorithm is highly parallelizable and runs efficiently on modern high-performance computing clusters. This method enables the ultimate promise of MEG and EEG for five-dimensional imaging of space, time, and frequency activity in the brain and renders it applicable for widespread studies of human cortical dynamics during cognition.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DALAL, Sarang S., Adrian G. GUGGISBERG, Erik EDWARDS, Kensuke SEKIHARA, Anne M. FINDLAY, Ryan T. CANOLTY, Mitchel S. BERGER, Robert T. KNIGHT, Nicholas M. BARBARO, Heidi E. KIRSCH, Srikantan S. NAGARAJAN, 2008. Five-dimensional neuroimaging : localization of the time–frequency dynamics of cortical activity. In: NeuroImage. 2008, 40(4), pp. 1686-1700. ISSN 1053-8119. Available under: doi: 10.1016/j.neuroimage.2008.01.023BibTex
@article{Dalal2008-05-01Fived-17211, year={2008}, doi={10.1016/j.neuroimage.2008.01.023}, title={Five-dimensional neuroimaging : localization of the time–frequency dynamics of cortical activity}, number={4}, volume={40}, issn={1053-8119}, journal={NeuroImage}, pages={1686--1700}, author={Dalal, Sarang S. and Guggisberg, Adrian G. and Edwards, Erik and Sekihara, Kensuke and Findlay, Anne M. and Canolty, Ryan T. and Berger, Mitchel S. and Knight, Robert T. and Barbaro, Nicholas M. and Kirsch, Heidi E. and Nagarajan, Srikantan S.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17211"> <dc:creator>Guggisberg, Adrian G.</dc:creator> <dc:contributor>Findlay, Anne M.</dc:contributor> <dcterms:title>Five-dimensional neuroimaging : localization of the time–frequency dynamics of cortical activity</dcterms:title> <dc:contributor>Nagarajan, Srikantan S.</dc:contributor> <dc:contributor>Knight, Robert T.</dc:contributor> <dc:creator>Sekihara, Kensuke</dc:creator> <dc:contributor>Guggisberg, Adrian G.</dc:contributor> <dc:contributor>Sekihara, Kensuke</dc:contributor> <dc:contributor>Dalal, Sarang S.</dc:contributor> <dc:creator>Barbaro, Nicholas M.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17211"/> <dc:creator>Knight, Robert T.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Nagarajan, Srikantan S.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-30T10:36:43Z</dc:date> <dc:creator>Canolty, Ryan T.</dc:creator> <dcterms:bibliographicCitation>Publ. in: Neuroimage ; 40 (2008), 4, S. 1686-1700</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-30T10:36:43Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Berger, Mitchel S.</dc:creator> <dc:contributor>Canolty, Ryan T.</dc:contributor> <dc:contributor>Kirsch, Heidi E.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Edwards, Erik</dc:creator> <dc:contributor>Berger, Mitchel S.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2008-05-01</dcterms:issued> <dc:creator>Dalal, Sarang S.</dc:creator> <dc:contributor>Edwards, Erik</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">The spatiotemporal dynamics of cortical oscillations across human brain regions remain poorly understood because of a lack of adequately validated methods for reconstructing such activity from noninvasive electrophysiological data. In this paper, we present a novel adaptive spatial filtering algorithm optimized for robust source time–frequency reconstruction from magnetoencephalography (MEG) and electroencephalography (EEG) data. The efficacy of the method is demonstrated with simulated sources and is also applied to real MEG data from a self-paced finger movement task. The algorithm reliably reveals modulations both in the beta band (12–30 Hz) and high gamma band (65–90 Hz) in sensorimotor cortex. The performance is validated by both across-subjects statistical comparisons and by intracranial electrocorticography (ECoG) data from two epilepsy patients. Interestingly, we also reliably observed high frequency activity (30–300 Hz) in the cerebellum, although with variable locations and frequencies across subjects. The proposed algorithm is highly parallelizable and runs efficiently on modern high-performance computing clusters. This method enables the ultimate promise of MEG and EEG for five-dimensional imaging of space, time, and frequency activity in the brain and renders it applicable for widespread studies of human cortical dynamics during cognition.</dcterms:abstract> <dc:creator>Kirsch, Heidi E.</dc:creator> <dc:creator>Findlay, Anne M.</dc:creator> <dc:contributor>Barbaro, Nicholas M.</dc:contributor> </rdf:Description> </rdf:RDF>