Publikation: A Multistep, Cluster-Based Multivariate Chart for Retrospective Monitoring of Individuals
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2009
Autor:innen
Jobe, J. Marcus
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Quality Technology. 2009, 41(4), pp. 323-339. ISSN 0022-4065. eISSN 2575-6230. Available under: doi: 10.1080/00224065.2009.11917789
Zusammenfassung
The presence of several outliers in an individuals retrospective multivariate control chart distorts both the sample mean vector and covariance matrix, making the classical Hotelling's T^2 approach unreliable for outlier detection. To overcome the distortion or masking, we propose a computer-intensive multistep cluster-based method. Compared with classical and robust estimation procedures, simulation studies show that our method is usually better and sometimes much better at detecting randomly occurring outliers as well as outliers arising from shifts in the process location. Additional comparisons based on real data are given.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
310 Statistik
Schlagwörter
Bruchpunkt, Mahalanobis-Distanz, Gleitende Mittelwert und Medoid, breakdown point, cluster analysis, kernel estimation, Mahalanobis distance, moving average and medoid
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JOBE, J. Marcus, Michael POKOJOVY, 2009. A Multistep, Cluster-Based Multivariate Chart for Retrospective Monitoring of Individuals. In: Journal of Quality Technology. 2009, 41(4), pp. 323-339. ISSN 0022-4065. eISSN 2575-6230. Available under: doi: 10.1080/00224065.2009.11917789BibTex
@article{Jobe2009Multi-830, year={2009}, doi={10.1080/00224065.2009.11917789}, title={A Multistep, Cluster-Based Multivariate Chart for Retrospective Monitoring of Individuals}, number={4}, volume={41}, issn={0022-4065}, journal={Journal of Quality Technology}, pages={323--339}, author={Jobe, J. Marcus and Pokojovy, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/830"> <dc:creator>Pokojovy, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Pokojovy, Michael</dc:contributor> <dcterms:bibliographicCitation>Publ. in: Journal of Quality Technology 41 (2009), 4, pp. 323-339</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>A Multistep, Cluster-Based Multivariate Chart for Retrospective Monitoring of Individuals</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Jobe, J. Marcus</dc:creator> <dcterms:issued>2009</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Jobe, J. Marcus</dc:contributor> <dcterms:abstract xml:lang="eng">The presence of several outliers in an individuals retrospective multivariate control chart distorts both the sample mean vector and covariance matrix, making the classical Hotelling's T^2 approach unreliable for outlier detection. To overcome the distortion or masking, we propose a computer-intensive multistep cluster-based method. Compared with classical and robust estimation procedures, simulation studies show that our method is usually better and sometimes much better at detecting randomly occurring outliers as well as outliers arising from shifts in the process location. Additional comparisons based on real data are given.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/830"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja