Publikation: The probable future of toxicology : probabilistic risk assessment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated artificial intelligence (AI) models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges, and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public. Plain language summary: This workshop report discusses the future of toxicology and how probabilistic risk assessment can help address uncertainties in assessing chemical risks. Experts emphasize the importance of quantitative assessment in toxicology and the need for a deeper understanding of how chemicals affect our health. By incorporating probabilistic risk assessment, we can better evaluate the potential risks posed by chemicals and make more informed decisions to protect human health and the environment. Embracing new technologies like artificial intelligence and natural language processing can enhance data analysis and improve the accuracy of risk assessments in toxicology.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAERTENS, Alexandra, Eric ANTIGNAC, Emilio BENFENATI, Denise BLOCH, Ellen FRITSCHE, Sebastian HOFFMANN, Joanna JAWORSKA, George LOIZOU, Kevin MCNALLY, Thomas HARTUNG, 2024. The probable future of toxicology : probabilistic risk assessment. In: Alternatives to Animal Experimentation : ALTEX. Springer. 2024, 41(2), S. 273-281. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2310301BibTex
@article{Maertens2024proba-70114, year={2024}, doi={10.14573/altex.2310301}, title={The probable future of toxicology : probabilistic risk assessment}, number={2}, volume={41}, issn={1868-596X}, journal={Alternatives to Animal Experimentation : ALTEX}, pages={273--281}, author={Maertens, Alexandra and Antignac, Eric and Benfenati, Emilio and Bloch, Denise and Fritsche, Ellen and Hoffmann, Sebastian and Jaworska, Joanna and Loizou, George and McNally, Kevin and Hartung, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70114"> <dc:creator>Fritsche, Ellen</dc:creator> <dc:creator>Bloch, Denise</dc:creator> <dc:contributor>McNally, Kevin</dc:contributor> <dc:creator>Jaworska, Joanna</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-13T06:55:06Z</dc:date> <dc:creator>Loizou, George</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Benfenati, Emilio</dc:creator> <dc:contributor>Maertens, Alexandra</dc:contributor> <dcterms:issued>2024</dcterms:issued> <dc:creator>Antignac, Eric</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70114"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70114/4/Maertens_2-1m8kk5ra3pyu65.pdf"/> <dc:contributor>Antignac, Eric</dc:contributor> <dc:creator>Maertens, Alexandra</dc:creator> <dc:creator>McNally, Kevin</dc:creator> <dc:contributor>Benfenati, Emilio</dc:contributor> <dc:contributor>Jaworska, Joanna</dc:contributor> <dc:creator>Hartung, Thomas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Bloch, Denise</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract>Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated artificial intelligence (AI) models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges, and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public. Plain language summary: This workshop report discusses the future of toxicology and how probabilistic risk assessment can help address uncertainties in assessing chemical risks. Experts emphasize the importance of quantitative assessment in toxicology and the need for a deeper understanding of how chemicals affect our health. By incorporating probabilistic risk assessment, we can better evaluate the potential risks posed by chemicals and make more informed decisions to protect human health and the environment. Embracing new technologies like artificial intelligence and natural language processing can enhance data analysis and improve the accuracy of risk assessments in toxicology.</dcterms:abstract> <dc:contributor>Fritsche, Ellen</dc:contributor> <dc:creator>Hoffmann, Sebastian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70114/4/Maertens_2-1m8kk5ra3pyu65.pdf"/> <dc:contributor>Loizou, George</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Hoffmann, Sebastian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-13T06:55:06Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>The probable future of toxicology : probabilistic risk assessment</dcterms:title> <dc:contributor>Hartung, Thomas</dc:contributor> </rdf:Description> </rdf:RDF>