Publikation:

The probable future of toxicology : probabilistic risk assessment

Lade...
Vorschaubild

Dateien

Maertens_2-1m8kk5ra3pyu65.pdf
Maertens_2-1m8kk5ra3pyu65.pdfGröße: 640.11 KBDownloads: 9

Datum

2024

Autor:innen

Maertens, Alexandra
Antignac, Eric
Benfenati, Emilio
Bloch, Denise
Fritsche, Ellen
Jaworska, Joanna
Loizou, George
McNally, Kevin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 963845

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Alternatives to Animal Experimentation : ALTEX. Springer. 2024, 41(2), S. 273-281. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2310301

Zusammenfassung

Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated artificial intelligence (AI) models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges, and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public. Plain language summary: This workshop report discusses the future of toxicology and how probabilistic risk assessment can help address uncertainties in assessing chemical risks. Experts emphasize the importance of quantitative assessment in toxicology and the need for a deeper understanding of how chemicals affect our health. By incorporating probabilistic risk assessment, we can better evaluate the potential risks posed by chemicals and make more informed decisions to protect human health and the environment. Embracing new technologies like artificial intelligence and natural language processing can enhance data analysis and improve the accuracy of risk assessments in toxicology.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

risk assessment, chemical hazard, computational toxicology, new approach methodologies (NAMs), artificial intelligence (AI)

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MAERTENS, Alexandra, Eric ANTIGNAC, Emilio BENFENATI, Denise BLOCH, Ellen FRITSCHE, Sebastian HOFFMANN, Joanna JAWORSKA, George LOIZOU, Kevin MCNALLY, Thomas HARTUNG, 2024. The probable future of toxicology : probabilistic risk assessment. In: Alternatives to Animal Experimentation : ALTEX. Springer. 2024, 41(2), S. 273-281. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2310301
BibTex
@article{Maertens2024proba-70114,
  year={2024},
  doi={10.14573/altex.2310301},
  title={The probable future of toxicology : probabilistic risk assessment},
  number={2},
  volume={41},
  issn={1868-596X},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={273--281},
  author={Maertens, Alexandra and Antignac, Eric and Benfenati, Emilio and Bloch, Denise and Fritsche, Ellen and Hoffmann, Sebastian and Jaworska, Joanna and Loizou, George and McNally, Kevin and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70114">
    <dc:creator>Fritsche, Ellen</dc:creator>
    <dc:creator>Bloch, Denise</dc:creator>
    <dc:contributor>McNally, Kevin</dc:contributor>
    <dc:creator>Jaworska, Joanna</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-13T06:55:06Z</dc:date>
    <dc:creator>Loizou, George</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Benfenati, Emilio</dc:creator>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dcterms:issued>2024</dcterms:issued>
    <dc:creator>Antignac, Eric</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70114"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70114/4/Maertens_2-1m8kk5ra3pyu65.pdf"/>
    <dc:contributor>Antignac, Eric</dc:contributor>
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:creator>McNally, Kevin</dc:creator>
    <dc:contributor>Benfenati, Emilio</dc:contributor>
    <dc:contributor>Jaworska, Joanna</dc:contributor>
    <dc:creator>Hartung, Thomas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Bloch, Denise</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract>Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated artificial intelligence (AI) models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges, and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public.
Plain language summary:
This workshop report discusses the future of toxicology and how probabilistic risk assessment can help address uncertainties in assessing chemical risks. Experts emphasize the importance of quantitative assessment in toxicology and the need for a deeper understanding of how chemicals affect our health. By incorporating probabilistic risk assessment, we can better evaluate the potential risks posed by chemicals and make more informed decisions to protect human health and the environment. Embracing new technologies like artificial intelligence and natural language processing can enhance data analysis and improve the accuracy of risk assessments in toxicology.</dcterms:abstract>
    <dc:contributor>Fritsche, Ellen</dc:contributor>
    <dc:creator>Hoffmann, Sebastian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70114/4/Maertens_2-1m8kk5ra3pyu65.pdf"/>
    <dc:contributor>Loizou, George</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Hoffmann, Sebastian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-13T06:55:06Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>The probable future of toxicology : probabilistic risk assessment</dcterms:title>
    <dc:contributor>Hartung, Thomas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen