Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision
Lade...
Dateien
Datum
2023
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Animal Ecology. Wiley. 2023, 92(7), pp. 1357-1371. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13904
Zusammenfassung
- Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals'social and physical environments.
- Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates.
- We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area.
- We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age–sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails.
- By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
behavioural tracking, computer vision, drones, environmental reconstruction, gelada monkey, pose, posture, video analysis, wildlife, zebra
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KOGER, Benjamin, Adwait DESHPANDE, Jeffrey T. KERBY, Jacob M. GRAVING, Blair R. COSTELLOE, Iain D. COUZIN, 2023. Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision. In: Journal of Animal Ecology. Wiley. 2023, 92(7), pp. 1357-1371. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13904BibTex
@article{Koger2023-03-21Quant-66550, year={2023}, doi={10.1111/1365-2656.13904}, title={Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision}, number={7}, volume={92}, issn={0021-8790}, journal={Journal of Animal Ecology}, pages={1357--1371}, author={Koger, Benjamin and Deshpande, Adwait and Kerby, Jeffrey T. and Graving, Jacob M. and Costelloe, Blair R. and Couzin, Iain D.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66550"> <dc:contributor>Couzin, Iain D.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Costelloe, Blair R.</dc:creator> <dc:creator>Couzin, Iain D.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision</dcterms:title> <dc:contributor>Deshpande, Adwait</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Koger, Benjamin</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66550/1/Koger_2-1mbccewh6x21i3.pdf"/> <dcterms:abstract>1. Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals'social and physical environments. 2. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates. 3. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area. 4. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age–sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails. 5. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:contributor>Koger, Benjamin</dc:contributor> <dc:creator>Deshpande, Adwait</dc:creator> <dc:creator>Kerby, Jeffrey T.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66550"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Kerby, Jeffrey T.</dc:contributor> <dc:contributor>Costelloe, Blair R.</dc:contributor> <dc:creator>Graving, Jacob M.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T07:56:15Z</dc:date> <dcterms:issued>2023-03-21</dcterms:issued> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T07:56:15Z</dcterms:available> <dc:contributor>Graving, Jacob M.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66550/1/Koger_2-1mbccewh6x21i3.pdf"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Code for the worked examples
EDMOND