Publikation:

Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision

Lade...
Vorschaubild

Dateien

Koger_2-1mbccewh6x21i3.pdf
Koger_2-1mbccewh6x21i3.pdfGröße: 12.35 MBDownloads: 22

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Animal Ecology. Wiley. 2023, 92(7), S. 1357-1371. ISSN 0021-8790. eISSN 1365-2656. Verfügbar unter: doi: 10.1111/1365-2656.13904

Zusammenfassung

  1. Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals'social and physical environments.
  2. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates.
  3. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area.
  4. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age–sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails.
  5. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

behavioural tracking, computer vision, drones, environmental reconstruction, gelada monkey, pose, posture, video analysis, wildlife, zebra

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOGER, Benjamin, Adwait DESHPANDE, Jeffrey T. KERBY, Jacob M. GRAVING, Blair R. COSTELLOE, Iain D. COUZIN, 2023. Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision. In: Journal of Animal Ecology. Wiley. 2023, 92(7), S. 1357-1371. ISSN 0021-8790. eISSN 1365-2656. Verfügbar unter: doi: 10.1111/1365-2656.13904
BibTex
@article{Koger2023-03-21Quant-66550,
  title={Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision},
  year={2023},
  doi={10.1111/1365-2656.13904},
  number={7},
  volume={92},
  issn={0021-8790},
  journal={Journal of Animal Ecology},
  pages={1357--1371},
  author={Koger, Benjamin and Deshpande, Adwait and Kerby, Jeffrey T. and Graving, Jacob M. and Costelloe, Blair R. and Couzin, Iain D.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66550">
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Costelloe, Blair R.</dc:creator>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision</dcterms:title>
    <dc:contributor>Deshpande, Adwait</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Koger, Benjamin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66550/1/Koger_2-1mbccewh6x21i3.pdf"/>
    <dcterms:abstract>1. Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals'social and physical environments.
2. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates.
3. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area.
4. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age–sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails.
5. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:contributor>Koger, Benjamin</dc:contributor>
    <dc:creator>Deshpande, Adwait</dc:creator>
    <dc:creator>Kerby, Jeffrey T.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66550"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Kerby, Jeffrey T.</dc:contributor>
    <dc:contributor>Costelloe, Blair R.</dc:contributor>
    <dc:creator>Graving, Jacob M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T07:56:15Z</dc:date>
    <dcterms:issued>2023-03-21</dcterms:issued>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T07:56:15Z</dcterms:available>
    <dc:contributor>Graving, Jacob M.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66550/1/Koger_2-1mbccewh6x21i3.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Code for the worked examples
EDMOND
Diese Publikation teilen