Sparse-PointNet : See Further in Autonomous Vehicles

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Robotics and Automation Letters. IEEE. 2021, 6(4), pp. 7049-7056. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3096253
Zusammenfassung

Since the density of LiDAR points reduces significantly with increasing distance, popular 3D detectors tend to learn spatial features from dense points and ignore very sparse points in the far range. As a result, their performance degrades dramatically beyond 50 meters. Motivated by the above problem, we introduce a novel approach to jointly detect objects from multimodal sensor data, with two main contributions. First, we leverage PointPainting [15] to develop a new key point sampling algorithm, which encodes the complex scene into a few representative points with approximately similar point density. Further, we fuse a dynamic continuous occupancy heatmap to refine the final proposal. In addition, we feed radar points into the network, which allows it to take into account additional cues. We evaluate our method on the widely used nuScenes dataset. Our method outperforms all state-of-the-art methods in the far range by a large margin and also achieves comparable performance in the near range.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WANG, Leichen, Bastian GOLDLÜCKE, 2021. Sparse-PointNet : See Further in Autonomous Vehicles. In: IEEE Robotics and Automation Letters. IEEE. 2021, 6(4), pp. 7049-7056. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3096253
BibTex
@article{Wang2021Spars-54548,
  year={2021},
  doi={10.1109/LRA.2021.3096253},
  title={Sparse-PointNet : See Further in Autonomous Vehicles},
  number={4},
  volume={6},
  journal={IEEE Robotics and Automation Letters},
  pages={7049--7056},
  author={Wang, Leichen and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54548">
    <dc:contributor>Wang, Leichen</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-11T09:09:55Z</dcterms:available>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54548"/>
    <dc:creator>Wang, Leichen</dc:creator>
    <dcterms:title>Sparse-PointNet : See Further in Autonomous Vehicles</dcterms:title>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-11T09:09:55Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Since the density of LiDAR points reduces significantly with increasing distance, popular 3D detectors tend to learn spatial features from dense points and ignore very sparse points in the far range. As a result, their performance degrades dramatically beyond 50 meters. Motivated by the above problem, we introduce a novel approach to jointly detect objects from multimodal sensor data, with two main contributions. First, we leverage PointPainting [15] to develop a new key point sampling algorithm, which encodes the complex scene into a few representative points with approximately similar point density. Further, we fuse a dynamic continuous occupancy heatmap to refine the final proposal. In addition, we feed radar points into the network, which allows it to take into account additional cues. We evaluate our method on the widely used nuScenes dataset. Our method outperforms all state-of-the-art methods in the far range by a large margin and also achieves comparable performance in the near range.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen