Publikation: Sparse-PointNet : See Further in Autonomous Vehicles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Since the density of LiDAR points reduces significantly with increasing distance, popular 3D detectors tend to learn spatial features from dense points and ignore very sparse points in the far range. As a result, their performance degrades dramatically beyond 50 meters. Motivated by the above problem, we introduce a novel approach to jointly detect objects from multimodal sensor data, with two main contributions. First, we leverage PointPainting [15] to develop a new key point sampling algorithm, which encodes the complex scene into a few representative points with approximately similar point density. Further, we fuse a dynamic continuous occupancy heatmap to refine the final proposal. In addition, we feed radar points into the network, which allows it to take into account additional cues. We evaluate our method on the widely used nuScenes dataset. Our method outperforms all state-of-the-art methods in the far range by a large margin and also achieves comparable performance in the near range.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Leichen, Bastian GOLDLÜCKE, 2021. Sparse-PointNet : See Further in Autonomous Vehicles. In: IEEE Robotics and Automation Letters. IEEE. 2021, 6(4), pp. 7049-7056. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3096253BibTex
@article{Wang2021Spars-54548, year={2021}, doi={10.1109/LRA.2021.3096253}, title={Sparse-PointNet : See Further in Autonomous Vehicles}, number={4}, volume={6}, journal={IEEE Robotics and Automation Letters}, pages={7049--7056}, author={Wang, Leichen and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54548"> <dc:contributor>Wang, Leichen</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-11T09:09:55Z</dcterms:available> <dc:creator>Goldlücke, Bastian</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54548"/> <dc:creator>Wang, Leichen</dc:creator> <dcterms:title>Sparse-PointNet : See Further in Autonomous Vehicles</dcterms:title> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2021</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-11T09:09:55Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Since the density of LiDAR points reduces significantly with increasing distance, popular 3D detectors tend to learn spatial features from dense points and ignore very sparse points in the far range. As a result, their performance degrades dramatically beyond 50 meters. Motivated by the above problem, we introduce a novel approach to jointly detect objects from multimodal sensor data, with two main contributions. First, we leverage PointPainting [15] to develop a new key point sampling algorithm, which encodes the complex scene into a few representative points with approximately similar point density. Further, we fuse a dynamic continuous occupancy heatmap to refine the final proposal. In addition, we feed radar points into the network, which allows it to take into account additional cues. We evaluate our method on the widely used nuScenes dataset. Our method outperforms all state-of-the-art methods in the far range by a large margin and also achieves comparable performance in the near range.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>