Publikation: Stuttgart’s Black Thursday on Twitter : Mapping Political Protests with Social Media Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Event detection based on textual data is an approach often used in the social sciences. The method has been used predominantly in the fields of international politics (Schrodt 2010) and public opinion research (Landmann and Zuell 2008). Event detection presupposes that major events leave traces in textual documents. By automatically identifying events in publicly available documents, researchers can establish timelines of events relevant to their research. For example, in international politics, researchers work on how to reliably identify political actors, time and topics from official documents, hoping to establish comprehensive and detailed maps of international treaties and conflicts. Based on these maps, they aim to develop models of the dynamics of conflict (Brandt et al. 2011). In public opinion research, one goal is to automatically deduce major events from newspaper coverage. This might be a first step in calculating the impact of these events on changes in public opinion (Landmann and Zuell 2008).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JUNGHERR, Andreas, Pascal JÜRGENS, 2014. Stuttgart’s Black Thursday on Twitter : Mapping Political Protests with Social Media Data. In: CANTIJOCH, Marta, ed., Rachel GIBSON, ed., Stephen WARD, ed.. Analyzing Social Media Data and Web Networks. London: Palgrave Macmillan, 2014, pp. 154-196. ISBN 978-1-349-44680-3. Available under: doi: 10.1057/9781137276773_7BibTex
@incollection{Jungherr2014Stutt-36521, year={2014}, doi={10.1057/9781137276773_7}, title={Stuttgart’s Black Thursday on Twitter : Mapping Political Protests with Social Media Data}, isbn={978-1-349-44680-3}, publisher={Palgrave Macmillan}, address={London}, booktitle={Analyzing Social Media Data and Web Networks}, pages={154--196}, editor={Cantijoch, Marta and Gibson, Rachel and Ward, Stephen}, author={Jungherr, Andreas and Jürgens, Pascal} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36521"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Jürgens, Pascal</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36521"/> <dc:contributor>Jürgens, Pascal</dc:contributor> <dcterms:abstract xml:lang="eng">Event detection based on textual data is an approach often used in the social sciences. The method has been used predominantly in the fields of international politics (Schrodt 2010) and public opinion research (Landmann and Zuell 2008). Event detection presupposes that major events leave traces in textual documents. By automatically identifying events in publicly available documents, researchers can establish timelines of events relevant to their research. For example, in international politics, researchers work on how to reliably identify political actors, time and topics from official documents, hoping to establish comprehensive and detailed maps of international treaties and conflicts. Based on these maps, they aim to develop models of the dynamics of conflict (Brandt et al. 2011). In public opinion research, one goal is to automatically deduce major events from newspaper coverage. This might be a first step in calculating the impact of these events on changes in public opinion (Landmann and Zuell 2008).</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:title>Stuttgart’s Black Thursday on Twitter : Mapping Political Protests with Social Media Data</dcterms:title> <dc:contributor>Jungherr, Andreas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-05T14:19:08Z</dcterms:available> <dc:creator>Jungherr, Andreas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-05T14:19:08Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2014</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> </rdf:Description> </rdf:RDF>