Publikation: Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
European Monetary Union member countries’ forecasts are often combined to obtain the forecasts of the Euro area macroeconomic aggregate variables. The aggregation weights which are used to produce the aggregates are often considered as combination weights. This paper investigates whether using different combination weights instead of the usual aggregation weights can help to provide more accurate forecasts. In this context, we examine the performance of equal weights, the least squares estimators of the weights, the combination method recently proposed by Hyndman et al. (Comput Stat Data Anal 55(9):2579–2589, 2011) and the weights suggested by shrinkage methods. We find that some variables like real GDP and the GDP deflator can be forecasted more precisely by using flexible combination weights. Furthermore, combining only forecasts of the three largest European countries helps to improve the forecasting performance. The persistence of the individual series seems to play an important role for the relative performance of the combination.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZENG, Jing, 2016. Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates. In: Empirica. 2016, 43(2), pp. 415-444. ISSN 0340-8744. eISSN 1573-6911. Available under: doi: 10.1007/s10663-016-9330-xBibTex
@article{Zeng2016Combi-34571, year={2016}, doi={10.1007/s10663-016-9330-x}, title={Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates}, number={2}, volume={43}, issn={0340-8744}, journal={Empirica}, pages={415--444}, author={Zeng, Jing} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34571"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:issued>2016</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34571"/> <dcterms:title>Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-06-28T10:28:05Z</dc:date> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-06-28T10:28:05Z</dcterms:available> <dc:contributor>Zeng, Jing</dc:contributor> <dcterms:abstract xml:lang="eng">European Monetary Union member countries’ forecasts are often combined to obtain the forecasts of the Euro area macroeconomic aggregate variables. The aggregation weights which are used to produce the aggregates are often considered as combination weights. This paper investigates whether using different combination weights instead of the usual aggregation weights can help to provide more accurate forecasts. In this context, we examine the performance of equal weights, the least squares estimators of the weights, the combination method recently proposed by Hyndman et al. (Comput Stat Data Anal 55(9):2579–2589, 2011) and the weights suggested by shrinkage methods. We find that some variables like real GDP and the GDP deflator can be forecasted more precisely by using flexible combination weights. Furthermore, combining only forecasts of the three largest European countries helps to improve the forecasting performance. The persistence of the individual series seems to play an important role for the relative performance of the combination.</dcterms:abstract> <dc:creator>Zeng, Jing</dc:creator> </rdf:Description> </rdf:RDF>