Publikation:

Exploring country level gender differences in the context of online dating using classification trees

Lade...
Vorschaubild

Dateien

Kisilevich_exploring country.pdf
Kisilevich_exploring country.pdfGröße: 1.26 MBDownloads: 190

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ATZMUELLER, Martin, ed. and others. Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010. 2010, pp. 71-87

Zusammenfassung

The key component of Social Networking Sites (SNS), gaining increasing popularity among Internet users, is the user profile, which plays a role of a self-advertisement in the aggregated form. While computer scientists investigate privacy implications of information disclosure, social scientists test or generate social or behavioral hypotheses based on the information provided by users in their profiles. Statistical analysis of the SNS phenomenon often is performed using only a very small sample of information extracted from a particular SNS or by interviewing students from a particular university. In this paper, we apply classification algorithm to a large-scale SNS dataset obtained from more than 10 million public profiles with 50 different attributes extracted from one of the largest dating sites in the Russian segment of the Internet. In particular we build gender classification models for the residents of the most active countries, and investigate the particular differences between genders in one country and the differences between the same-genders in different countries. The preliminary results are reported in this paper. To the best of our knowledge, this is the first attempt to conduct a large-scale analysis of SNS profiles and compare gender differences on a country level.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Social Networking Sites, Self-disclosure, Gender differences, Classification trees

Konferenz

Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 20. Sept. 2010, Barcelona, Spain
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KISILEVICH, Slava, Mark LAST, 2010. Exploring country level gender differences in the context of online dating using classification trees. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Barcelona, Spain, 20. Sept. 2010. In: ATZMUELLER, Martin, ed. and others. Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010. 2010, pp. 71-87
BibTex
@inproceedings{Kisilevich2010Explo-19139,
  year={2010},
  title={Exploring country level gender differences in the context of online dating using classification trees},
  booktitle={Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010},
  pages={71--87},
  editor={Atzmueller, Martin},
  author={Kisilevich, Slava and Last, Mark}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19139">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kisilevich, Slava</dc:contributor>
    <dc:creator>Last, Mark</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-25T09:34:05Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19139/1/Kisilevich_exploring%20country.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">The key component of Social Networking Sites (SNS), gaining increasing popularity among Internet users, is the user profile, which plays a role of a self-advertisement in the aggregated form. While computer scientists investigate privacy implications of information disclosure, social scientists test or generate social or behavioral hypotheses based on the information provided by users in their profiles. Statistical analysis of the SNS phenomenon often is performed using only a very small sample of information extracted from a particular SNS or by interviewing students from a particular university. In this paper, we apply classification algorithm to a large-scale SNS dataset obtained from more than 10 million public profiles with 50 different attributes extracted from one of the largest dating sites in the Russian segment of the Internet. In particular we build gender classification models for the residents of the most active countries, and investigate the particular differences between genders in one country and the differences between the same-genders in different countries. The preliminary results are reported in this paper. To the best of our knowledge, this is the first attempt to conduct a large-scale analysis of SNS profiles and compare gender differences on a country level.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Exploring country level gender differences in the context of online dating using classification trees</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Last, Mark</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-25T09:34:05Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19139/1/Kisilevich_exploring%20country.pdf"/>
    <dc:creator>Kisilevich, Slava</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19139"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010 / Martin Atzmueller... (Eds.). - Online-Ressource. - pp. 71-87</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen