Publikation: Exploring country level gender differences in the context of online dating using classification trees
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The key component of Social Networking Sites (SNS), gaining increasing popularity among Internet users, is the user profile, which plays a role of a self-advertisement in the aggregated form. While computer scientists investigate privacy implications of information disclosure, social scientists test or generate social or behavioral hypotheses based on the information provided by users in their profiles. Statistical analysis of the SNS phenomenon often is performed using only a very small sample of information extracted from a particular SNS or by interviewing students from a particular university. In this paper, we apply classification algorithm to a large-scale SNS dataset obtained from more than 10 million public profiles with 50 different attributes extracted from one of the largest dating sites in the Russian segment of the Internet. In particular we build gender classification models for the residents of the most active countries, and investigate the particular differences between genders in one country and the differences between the same-genders in different countries. The preliminary results are reported in this paper. To the best of our knowledge, this is the first attempt to conduct a large-scale analysis of SNS profiles and compare gender differences on a country level.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KISILEVICH, Slava, Mark LAST, 2010. Exploring country level gender differences in the context of online dating using classification trees. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Barcelona, Spain, 20. Sept. 2010. In: ATZMUELLER, Martin, ed. and others. Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010. 2010, pp. 71-87BibTex
@inproceedings{Kisilevich2010Explo-19139, year={2010}, title={Exploring country level gender differences in the context of online dating using classification trees}, booktitle={Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010}, pages={71--87}, editor={Atzmueller, Martin}, author={Kisilevich, Slava and Last, Mark} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19139"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kisilevich, Slava</dc:contributor> <dc:creator>Last, Mark</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-25T09:34:05Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19139/1/Kisilevich_exploring%20country.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">The key component of Social Networking Sites (SNS), gaining increasing popularity among Internet users, is the user profile, which plays a role of a self-advertisement in the aggregated form. While computer scientists investigate privacy implications of information disclosure, social scientists test or generate social or behavioral hypotheses based on the information provided by users in their profiles. Statistical analysis of the SNS phenomenon often is performed using only a very small sample of information extracted from a particular SNS or by interviewing students from a particular university. In this paper, we apply classification algorithm to a large-scale SNS dataset obtained from more than 10 million public profiles with 50 different attributes extracted from one of the largest dating sites in the Russian segment of the Internet. In particular we build gender classification models for the residents of the most active countries, and investigate the particular differences between genders in one country and the differences between the same-genders in different countries. The preliminary results are reported in this paper. To the best of our knowledge, this is the first attempt to conduct a large-scale analysis of SNS profiles and compare gender differences on a country level.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Exploring country level gender differences in the context of online dating using classification trees</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Last, Mark</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-25T09:34:05Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19139/1/Kisilevich_exploring%20country.pdf"/> <dc:creator>Kisilevich, Slava</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19139"/> <dcterms:issued>2010</dcterms:issued> <dcterms:bibliographicCitation>First publ. in: Mining Ubiquitous and Social Environments : MUSE 2010 ; International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases in Barcelona, Spain, September 20th, 2010 / Martin Atzmueller... (Eds.). - Online-Ressource. - pp. 71-87</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>