Publikation: Anomalous citations detection in academic networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Citation network analysis attracts increasing attention from disciplines of complex network analysis and science of science. One big challenge in this regard is that there are unreasonable citations in citation networks, i.e., cited papers are not relevant to the citing paper. Existing research on citation analysis has primarily concentrated on the contents and ignored the complex relations between academic entities. In this paper, we propose a novel research topic, that is, how to detect anomalous citations. To be specific, we first define anomalous citations and propose a unified framework, named ACTION, to detect anomalous citations in a heterogeneous academic network. ACTION is established based on non-negative matrix factorization and network representation learning, which considers not only the relevance of citation contents but also the relationships among academic entities including journals, papers, and authors. To evaluate the performance of ACTION, we construct three anomalous citation datasets. Experimental results demonstrate the effectiveness of the proposed method. Detecting anomalous citations carry profound significance for academic fairness.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIU, Jiaying, Xiaomei BAI, Mengying WANG, Suppawong TUAROB, Feng XIA, 2024. Anomalous citations detection in academic networks. In: Artificial Intelligence Review. Springer. 2024, 57(4), 103. eISSN 1573-7462. Verfügbar unter: doi: 10.1007/s10462-023-10655-5BibTex
@article{Liu2024-03-29Anoma-69874, year={2024}, doi={10.1007/s10462-023-10655-5}, title={Anomalous citations detection in academic networks}, number={4}, volume={57}, journal={Artificial Intelligence Review}, author={Liu, Jiaying and Bai, Xiaomei and Wang, Mengying and Tuarob, Suppawong and Xia, Feng}, note={Article Number: 103} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69874"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69874"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>Citation network analysis attracts increasing attention from disciplines of complex network analysis and science of science. One big challenge in this regard is that there are unreasonable citations in citation networks, i.e., cited papers are not relevant to the citing paper. Existing research on citation analysis has primarily concentrated on the contents and ignored the complex relations between academic entities. In this paper, we propose a novel research topic, that is, how to detect anomalous citations. To be specific, we first define anomalous citations and propose a unified framework, named ACTION, to detect anomalous citations in a heterogeneous academic network. ACTION is established based on non-negative matrix factorization and network representation learning, which considers not only the relevance of citation contents but also the relationships among academic entities including journals, papers, and authors. To evaluate the performance of ACTION, we construct three anomalous citation datasets. Experimental results demonstrate the effectiveness of the proposed method. Detecting anomalous citations carry profound significance for academic fairness.</dcterms:abstract> <dc:creator>Tuarob, Suppawong</dc:creator> <dc:contributor>Wang, Mengying</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-29T09:48:58Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69874/1/Liu_2-1moaobqediiny2.pdf"/> <dc:creator>Liu, Jiaying</dc:creator> <dc:creator>Bai, Xiaomei</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69874/1/Liu_2-1moaobqediiny2.pdf"/> <dc:contributor>Tuarob, Suppawong</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wang, Mengying</dc:creator> <dcterms:title>Anomalous citations detection in academic networks</dcterms:title> <dc:creator>Xia, Feng</dc:creator> <dc:contributor>Xia, Feng</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2024-03-29</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Liu, Jiaying</dc:contributor> <dc:contributor>Bai, Xiaomei</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-29T09:48:58Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>