Publikation:

Anomalous citations detection in academic networks

Lade...
Vorschaubild

Dateien

Liu_2-1moaobqediiny2.pdf
Liu_2-1moaobqediiny2.pdfGröße: 2.55 MBDownloads: 5

Datum

2024

Autor:innen

Liu, Jiaying
Bai, Xiaomei
Tuarob, Suppawong
Xia, Feng

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

National Natural Science Foundation of China: No. 72204037

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Artificial Intelligence Review. Springer. 2024, 57(4), 103. eISSN 1573-7462. Verfügbar unter: doi: 10.1007/s10462-023-10655-5

Zusammenfassung

Citation network analysis attracts increasing attention from disciplines of complex network analysis and science of science. One big challenge in this regard is that there are unreasonable citations in citation networks, i.e., cited papers are not relevant to the citing paper. Existing research on citation analysis has primarily concentrated on the contents and ignored the complex relations between academic entities. In this paper, we propose a novel research topic, that is, how to detect anomalous citations. To be specific, we first define anomalous citations and propose a unified framework, named ACTION, to detect anomalous citations in a heterogeneous academic network. ACTION is established based on non-negative matrix factorization and network representation learning, which considers not only the relevance of citation contents but also the relationships among academic entities including journals, papers, and authors. To evaluate the performance of ACTION, we construct three anomalous citation datasets. Experimental results demonstrate the effectiveness of the proposed method. Detecting anomalous citations carry profound significance for academic fairness.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Anomalous citation, Scholarly big data, Network representation, Nonnegative matrix factorization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIU, Jiaying, Xiaomei BAI, Mengying WANG, Suppawong TUAROB, Feng XIA, 2024. Anomalous citations detection in academic networks. In: Artificial Intelligence Review. Springer. 2024, 57(4), 103. eISSN 1573-7462. Verfügbar unter: doi: 10.1007/s10462-023-10655-5
BibTex
@article{Liu2024-03-29Anoma-69874,
  year={2024},
  doi={10.1007/s10462-023-10655-5},
  title={Anomalous citations detection in academic networks},
  number={4},
  volume={57},
  journal={Artificial Intelligence Review},
  author={Liu, Jiaying and Bai, Xiaomei and Wang, Mengying and Tuarob, Suppawong and Xia, Feng},
  note={Article Number: 103}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69874">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69874"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract>Citation network analysis attracts increasing attention from disciplines of complex network analysis and science of science. One big challenge in this regard is that there are unreasonable citations in citation networks, i.e., cited papers are not relevant to the citing paper. Existing research on citation analysis has primarily concentrated on the contents and ignored the complex relations between academic entities. In this paper, we propose a novel research topic, that is, how to detect anomalous citations. To be specific, we first define anomalous citations and propose a unified framework, named ACTION, to detect anomalous citations in a heterogeneous academic network. ACTION is established based on non-negative matrix factorization and network representation learning, which considers not only the relevance of citation contents but also the relationships among academic entities including journals, papers, and authors. To evaluate the performance of ACTION, we construct three anomalous citation datasets. Experimental results demonstrate the effectiveness of the proposed method. Detecting anomalous citations carry profound significance for academic fairness.</dcterms:abstract>
    <dc:creator>Tuarob, Suppawong</dc:creator>
    <dc:contributor>Wang, Mengying</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-29T09:48:58Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69874/1/Liu_2-1moaobqediiny2.pdf"/>
    <dc:creator>Liu, Jiaying</dc:creator>
    <dc:creator>Bai, Xiaomei</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69874/1/Liu_2-1moaobqediiny2.pdf"/>
    <dc:contributor>Tuarob, Suppawong</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wang, Mengying</dc:creator>
    <dcterms:title>Anomalous citations detection in academic networks</dcterms:title>
    <dc:creator>Xia, Feng</dc:creator>
    <dc:contributor>Xia, Feng</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2024-03-29</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Liu, Jiaying</dc:contributor>
    <dc:contributor>Bai, Xiaomei</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-29T09:48:58Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen