Publikation: Grand Challenges in Visual Analytics Applications
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the past two decades, research in visual analytics (VA) applications has made tremendous progress, not just in terms of scientific contributions, but also in real-world impact across wide-ranging domains including bioinformatics, urban analytics, and explainable AI. Despite these success stories, questions on the rigor and value of VA application research have emerged as a grand challenge. This article outlines a research and development agenda for making VA application research more rigorous and impactful. We first analyze the characteristics of VA application research and explain how they cause the rigor and value problem. Next, we propose a research ecosystem for improving scientific value, and rigor and outline an agenda with 12 open challenges spanning four areas, including foundation, methodology, application, and community. We encourage discussions, debates, and innovative efforts toward more rigorous and impactful VA research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WU, Aoyu, Dazhen DENG, Min CHEN, Shixia LIU, Daniel A. KEIM, Ross MACIEJEWSKI, Silvia MIKSCH, Hendrik STROBELT, Fernanda VIÉGAS, Martin WATTENBERG, 2023. Grand Challenges in Visual Analytics Applications. In: IEEE Computer Graphics and Applications. IEEE. 2023, 43(5), pp. 83-90. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/mcg.2023.3284620BibTex
@article{Wu2023-09-01Grand-67830, year={2023}, doi={10.1109/mcg.2023.3284620}, title={Grand Challenges in Visual Analytics Applications}, number={5}, volume={43}, issn={0272-1716}, journal={IEEE Computer Graphics and Applications}, pages={83--90}, author={Wu, Aoyu and Deng, Dazhen and Chen, Min and Liu, Shixia and Keim, Daniel A. and Maciejewski, Ross and Miksch, Silvia and Strobelt, Hendrik and Viégas, Fernanda and Wattenberg, Martin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67830"> <dc:creator>Viégas, Fernanda</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-20T11:53:19Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wu, Aoyu</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Grand Challenges in Visual Analytics Applications</dcterms:title> <dc:contributor>Miksch, Silvia</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>In the past two decades, research in visual analytics (VA) applications has made tremendous progress, not just in terms of scientific contributions, but also in real-world impact across wide-ranging domains including bioinformatics, urban analytics, and explainable AI. Despite these success stories, questions on the rigor and value of VA application research have emerged as a grand challenge. This article outlines a research and development agenda for making VA application research more rigorous and impactful. We first analyze the characteristics of VA application research and explain how they cause the rigor and value problem. Next, we propose a research ecosystem for improving scientific value, and rigor and outline an agenda with 12 open challenges spanning four areas, including foundation, methodology, application, and community. We encourage discussions, debates, and innovative efforts toward more rigorous and impactful VA research.</dcterms:abstract> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-20T11:53:19Z</dc:date> <dc:contributor>Wu, Aoyu</dc:contributor> <dc:contributor>Liu, Shixia</dc:contributor> <dcterms:issued>2023-09-01</dcterms:issued> <dc:creator>Chen, Min</dc:creator> <dc:creator>Liu, Shixia</dc:creator> <dc:contributor>Viégas, Fernanda</dc:contributor> <dc:contributor>Chen, Min</dc:contributor> <dc:creator>Miksch, Silvia</dc:creator> <dc:contributor>Deng, Dazhen</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Deng, Dazhen</dc:creator> <dc:creator>Maciejewski, Ross</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67830"/> <dc:contributor>Wattenberg, Martin</dc:contributor> <dc:creator>Wattenberg, Martin</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Strobelt, Hendrik</dc:creator> <dc:contributor>Maciejewski, Ross</dc:contributor> <dc:contributor>Strobelt, Hendrik</dc:contributor> </rdf:Description> </rdf:RDF>