Publikation:

Event Identification and Tracking in Social Media Streaming Data

Lade...
Vorschaubild

Dateien

Weiler_274714.pdf
Weiler_274714.pdfGröße: 687.46 KBDownloads: 613

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CANDAN, K. Selcuk, ed. and others. Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014. 2014, pp. 282-287. CEUR workshop proceedings. 1133

Zusammenfassung

In recent years, the growing popularity and active use of social media services on the web have resulted in massive amounts of user-generated data. With these data available, there is also an increasing interest in analyzing it and to extract information from it. Since social media analysis is concerned with investigating current events around the world, there is a strong emphasis on identifying these evens as quickly as possible, ideally in real-time. In order to scale with the rapidly increasing volume of social media data, we propose to explore very simple event identification mechanisms, rather than applying the more complex approaches that have been proposed in the literature. In this paper, we present a first investigation along this motivation. We discuss a simple sliding window model, which uses shifts in the inverse document frequency (IDF) to capture trending terms as well as to track the evolution and the context around events. Further, we present an initial experimental evaluation of the results that we obtained by analyzing real-world data streams from Twitter.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

event detection, stream processing, social media analytics

Konferenz

EDBT/ICDT, 28. März 2014, Athens, Greece
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2014. Event Identification and Tracking in Social Media Streaming Data. EDBT/ICDT. Athens, Greece, 28. März 2014. In: CANDAN, K. Selcuk, ed. and others. Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014. 2014, pp. 282-287. CEUR workshop proceedings. 1133
BibTex
@inproceedings{Weiler2014Event-27471,
  year={2014},
  title={Event Identification and Tracking in Social Media Streaming Data},
  number={1133},
  series={CEUR workshop proceedings},
  booktitle={Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014},
  pages={282--287},
  editor={Candan, K. Selcuk},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.},
  note={Link zur Originalveröffentlichung: http://ceur-ws.org/Vol-1133/paper-46.pdf}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27471">
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27471"/>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:bibliographicCitation>Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28th, 2014 / ed. by K. Selcuk Candan ... - 2014. - S. 282-287. - (CEUR workshop proceedings ; 1133)</dcterms:bibliographicCitation>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Event Identification and Tracking in Social Media Streaming Data</dcterms:title>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27471/2/Weiler_274714.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-20T09:09:44Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-20T09:09:44Z</dc:date>
    <dcterms:abstract xml:lang="eng">In recent years, the growing popularity and active use of social media services on the web have resulted in massive amounts of user-generated data. With these data available, there is also an increasing interest in analyzing it and to extract information from it. Since social media analysis is concerned with investigating current events around the world, there is a strong emphasis on identifying these evens as quickly as possible, ideally in real-time. In order to scale with the rapidly increasing volume of social media data, we propose to explore very simple event identification mechanisms, rather than applying the more complex approaches that have been proposed in the literature. In this paper, we present a first investigation along this motivation. We discuss a simple sliding window model, which uses shifts in the inverse document frequency (IDF) to capture trending terms as well as to track the evolution and the context around events. Further, we present an initial experimental evaluation of the results that we obtained by analyzing real-world data streams from Twitter.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27471/2/Weiler_274714.pdf"/>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Link zur Originalveröffentlichung: http://ceur-ws.org/Vol-1133/paper-46.pdf
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen