Publikation: Event Identification and Tracking in Social Media Streaming Data
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years, the growing popularity and active use of social media services on the web have resulted in massive amounts of user-generated data. With these data available, there is also an increasing interest in analyzing it and to extract information from it. Since social media analysis is concerned with investigating current events around the world, there is a strong emphasis on identifying these evens as quickly as possible, ideally in real-time. In order to scale with the rapidly increasing volume of social media data, we propose to explore very simple event identification mechanisms, rather than applying the more complex approaches that have been proposed in the literature. In this paper, we present a first investigation along this motivation. We discuss a simple sliding window model, which uses shifts in the inverse document frequency (IDF) to capture trending terms as well as to track the evolution and the context around events. Further, we present an initial experimental evaluation of the results that we obtained by analyzing real-world data streams from Twitter.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2014. Event Identification and Tracking in Social Media Streaming Data. EDBT/ICDT. Athens, Greece, 28. März 2014. In: CANDAN, K. Selcuk, ed. and others. Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014. 2014, pp. 282-287. CEUR workshop proceedings. 1133BibTex
@inproceedings{Weiler2014Event-27471, year={2014}, title={Event Identification and Tracking in Social Media Streaming Data}, number={1133}, series={CEUR workshop proceedings}, booktitle={Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014}, pages={282--287}, editor={Candan, K. Selcuk}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}, note={Link zur Originalveröffentlichung: http://ceur-ws.org/Vol-1133/paper-46.pdf} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27471"> <dc:contributor>Weiler, Andreas</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27471"/> <dcterms:issued>2014</dcterms:issued> <dcterms:bibliographicCitation>Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28th, 2014 / ed. by K. Selcuk Candan ... - 2014. - S. 282-287. - (CEUR workshop proceedings ; 1133)</dcterms:bibliographicCitation> <dc:creator>Weiler, Andreas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Event Identification and Tracking in Social Media Streaming Data</dcterms:title> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27471/2/Weiler_274714.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-20T09:09:44Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-20T09:09:44Z</dc:date> <dcterms:abstract xml:lang="eng">In recent years, the growing popularity and active use of social media services on the web have resulted in massive amounts of user-generated data. With these data available, there is also an increasing interest in analyzing it and to extract information from it. Since social media analysis is concerned with investigating current events around the world, there is a strong emphasis on identifying these evens as quickly as possible, ideally in real-time. In order to scale with the rapidly increasing volume of social media data, we propose to explore very simple event identification mechanisms, rather than applying the more complex approaches that have been proposed in the literature. In this paper, we present a first investigation along this motivation. We discuss a simple sliding window model, which uses shifts in the inverse document frequency (IDF) to capture trending terms as well as to track the evolution and the context around events. Further, we present an initial experimental evaluation of the results that we obtained by analyzing real-world data streams from Twitter.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27471/2/Weiler_274714.pdf"/> <dc:creator>Scholl, Marc H.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>