Publikation:

Reduced basis method for the Stokes equations in decomposable domains using greedy optimization

Lade...
Vorschaubild

Dateien

Volkwein_279961.pdf
Volkwein_279961.pdfGröße: 391.45 KBDownloads: 228

Datum

2014

Autor:innen

Quarteroni, Alfio
Rozza, Gianluigi

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690IAPICHINO, Laura, Alfio QUARTERONI, Gianluigi ROZZA, Stefan VOLKWEIN, 2014. Reduced basis method for the Stokes equations in decomposable domains using greedy optimization
BibTex
@unpublished{Iapichino2014Reduc-27996,
  year={2014},
  title={Reduced basis method for the Stokes equations in decomposable domains using greedy optimization},
  author={Iapichino, Laura and Quarteroni, Alfio and Rozza, Gianluigi and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27996">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27996"/>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:contributor>Iapichino, Laura</dc:contributor>
    <dc:contributor>Quarteroni, Alfio</dc:contributor>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dc:date>
    <dc:creator>Rozza, Gianluigi</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Quarteroni, Alfio</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Rozza, Gianluigi</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Reduced basis method for the Stokes equations in decomposable domains using greedy optimization</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:abstract xml:lang="eng">In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/>
    <dc:creator>Iapichino, Laura</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen