Publikation:

Probabilistic Proximity Searching Algorithms Based on Compact Partitions

Lade...
Vorschaubild

Dateien

spire02.pdf
spire02.pdfGröße: 219.08 KBDownloads: 339

Datum

2002

Autor:innen

Bustos Cárdenas, Benjamin Eugenio
Navarro, Gonzalo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LAENDER, Alberto H. F., ed., Arlindo L. OLIVEIRA, ed.. String Processing and Information Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 284-297. Lecture Notes in Computer Science. 2476. ISBN 978-3-540-44158-8. Available under: doi: 10.1007/3-540-45735-6_25

Zusammenfassung

The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the elements at a fraction of the cost of the exact algorithm. These algorithms are welcome in most applications because resorting to metric space searching already involves a fuzziness in the retrieval requirements. In this paper we push further in this direction by developing probabilistic algorithms on data structures whose exact versions are the best for high dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We also give new insights on the problem and propose a novel view based on time-bounded searching.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BUSTOS CÁRDENAS, Benjamin Eugenio, Gonzalo NAVARRO, 2002. Probabilistic Proximity Searching Algorithms Based on Compact Partitions. In: LAENDER, Alberto H. F., ed., Arlindo L. OLIVEIRA, ed.. String Processing and Information Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 284-297. Lecture Notes in Computer Science. 2476. ISBN 978-3-540-44158-8. Available under: doi: 10.1007/3-540-45735-6_25
BibTex
@inproceedings{BustosCardenas2002-09-18Proba-5445,
  year={2002},
  doi={10.1007/3-540-45735-6_25},
  title={Probabilistic Proximity Searching Algorithms Based on Compact Partitions},
  number={2476},
  isbn={978-3-540-44158-8},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={String Processing and Information Retrieval},
  pages={284--297},
  editor={Laender, Alberto H. F. and Oliveira, Arlindo L.},
  author={Bustos Cárdenas, Benjamin Eugenio and Navarro, Gonzalo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5445">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dcterms:available>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Probabilistic Proximity Searching Algorithms Based on Compact Partitions</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:bibliographicCitation>First publ. in: Lecture notes in computer science, No. 2476 (2002), pp. 284-297</dcterms:bibliographicCitation>
    <dc:creator>Navarro, Gonzalo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5445/1/spire02.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dc:date>
    <dcterms:issued>2002-09-18</dcterms:issued>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5445"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5445/1/spire02.pdf"/>
    <dcterms:abstract xml:lang="eng">The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the elements at a fraction of the cost of the exact algorithm. These algorithms are welcome in most applications because resorting to metric space searching already involves a fuzziness in the retrieval requirements. In this paper we push further in this direction by developing probabilistic algorithms on data structures whose exact versions are the best for high dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We also give new insights on the problem and propose a novel view based on time-bounded searching.</dcterms:abstract>
    <dc:creator>Bustos Cárdenas, Benjamin Eugenio</dc:creator>
    <dc:contributor>Navarro, Gonzalo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Bustos Cárdenas, Benjamin Eugenio</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen