Publikation: Explaining Contextualization in Language Models using Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Despite the success of contextualized language models on various NLP tasks, it is still unclear what these models really learn. In this paper, we contribute to the current efforts of explaining such models by exploring the continuum between function and content words with respect to contextualization in BERT, based on linguistically-informed insights. In particular, we utilize scoring and visual analytics techniques: we use an existing similarity-based score to measure contextualization and integrate it into a novel visual analytics technique, presenting the model’s layers simultaneously and highlighting intra-layer properties and inter-layer differences. We show that contextualization is neither driven by polysemy nor by pure context variation. We also provide insights on why BERT fails to model words in the middle of the functionality continuum.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEVASTJANOVA, Rita, Aikaterini-Lida KALOULI, Christin SCHÄTZLE, Hanna SCHÄFER, Mennatallah EL-ASSADY, 2021. Explaining Contextualization in Language Models using Visual Analytics. 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Bangkok, 1. Aug. 2021 - 6. Aug. 2021. In: ZONG, Chengqing, ed., Fei XIA, ed., Wenjie LI, ed. and others. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021, pp. 464-476. ISBN 978-1-954085-52-7. Available under: doi: 10.18653/v1/2021.acl-long.39BibTex
@inproceedings{Sevastjanova2021Expla-55999, year={2021}, doi={10.18653/v1/2021.acl-long.39}, title={Explaining Contextualization in Language Models using Visual Analytics}, isbn={978-1-954085-52-7}, publisher={Association for Computational Linguistics}, address={Stroudsburg, PA}, booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Volume 1: Long Papers)}, pages={464--476}, editor={Zong, Chengqing and Xia, Fei and Li, Wenjie}, author={Sevastjanova, Rita and Kalouli, Aikaterini-Lida and Schätzle, Christin and Schäfer, Hanna and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55999"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor> <dc:contributor>Schätzle, Christin</dc:contributor> <dc:creator>Schätzle, Christin</dc:creator> <dc:creator>Sevastjanova, Rita</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kalouli, Aikaterini-Lida</dc:creator> <dc:creator>Schäfer, Hanna</dc:creator> <dc:contributor>Schäfer, Hanna</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T13:17:02Z</dcterms:available> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55999"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T13:17:02Z</dc:date> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Despite the success of contextualized language models on various NLP tasks, it is still unclear what these models really learn. In this paper, we contribute to the current efforts of explaining such models by exploring the continuum between function and content words with respect to contextualization in BERT, based on linguistically-informed insights. In particular, we utilize scoring and visual analytics techniques: we use an existing similarity-based score to measure contextualization and integrate it into a novel visual analytics technique, presenting the model’s layers simultaneously and highlighting intra-layer properties and inter-layer differences. We show that contextualization is neither driven by polysemy nor by pure context variation. We also provide insights on why BERT fails to model words in the middle of the functionality continuum.</dcterms:abstract> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dcterms:title>Explaining Contextualization in Language Models using Visual Analytics</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>