Publikation:

Controllability in Cancer Metabolic Networks According to Drug Targets as Driver Nodes

Lade...
Vorschaubild

Dateien

Asgari_0-395310.pdf
Asgari_0-395310.pdfGröße: 1.83 MBDownloads: 230

Datum

2013

Autor:innen

Asgari, Yazdan
Salehzadeh-Yazdi, Ali
Masoudi-Nejad, Ali

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS ONE. 2013, 8(11), e79397. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0079397

Zusammenfassung

Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ASGARI, Yazdan, Ali SALEHZADEH-YAZDI, Falk SCHREIBER, Ali MASOUDI-NEJAD, 2013. Controllability in Cancer Metabolic Networks According to Drug Targets as Driver Nodes. In: PLoS ONE. 2013, 8(11), e79397. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0079397
BibTex
@article{Asgari2013-11-25Contr-38621,
  year={2013},
  doi={10.1371/journal.pone.0079397},
  title={Controllability in Cancer Metabolic Networks According to Drug Targets as Driver Nodes},
  number={11},
  volume={8},
  journal={PLoS ONE},
  author={Asgari, Yazdan and Salehzadeh-Yazdi, Ali and Schreiber, Falk and Masoudi-Nejad, Ali},
  note={Article Number: e79397}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38621">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38621/3/Asgari_0-395310.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-26T09:54:50Z</dc:date>
    <dcterms:title>Controllability in Cancer Metabolic Networks According to Drug Targets as Driver Nodes</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38621"/>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dc:contributor>Masoudi-Nejad, Ali</dc:contributor>
    <dcterms:abstract xml:lang="eng">Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dc:contributor>Salehzadeh-Yazdi, Ali</dc:contributor>
    <dcterms:issued>2013-11-25</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-26T09:54:50Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38621/3/Asgari_0-395310.pdf"/>
    <dc:creator>Asgari, Yazdan</dc:creator>
    <dc:contributor>Asgari, Yazdan</dc:contributor>
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dc:creator>Salehzadeh-Yazdi, Ali</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Masoudi-Nejad, Ali</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen