Publikation:

Personalized Language Model Selection Through Gamified Elicitation of Contrastive Concept Preferences

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Hauptmann, Hanna
Deterding, Sebastian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(8), S. 5449-5465. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2023.3296905

Zusammenfassung

Language models are widely used for different Natural Language Processing tasks while suffering from a lack of personalization. Personalization can be achieved by, e.g., fine-tuning the model on training data that is created by the user (e.g., social media posts). Previous work shows that the acquisition of such data can be challenging. Instead of adapting the model's parameters, we thus suggest selecting a model that matches the user's mental model of different thematic concepts in language. In this article, we attempt to capture such individual language understanding of users. In this process, two challenges have to be considered. First, we need to counteract disengagement since the task of communicating one's language understanding typically encompasses repetitive and time-consuming actions. Second, we need to enable users to externalize their mental models in different contexts, considering that language use changes depending on the environment. In this article, we integrate methods of gamification into a visual analytics (VA) workflow to engage users in sharing their knowledge within various contexts. In particular, we contribute the design of a gameful VA playground called Concept Universe. During the four-phased game, the users build personalized concept descriptions by explaining given concept names through representative keywords. Based on their performance, the system reacts with constant visual, verbal, and auditory feedback. We evaluate the system in a user study with six participants, showing that users are engaged and provide more specific input when facing a virtual opponent. We use the generated concepts to make personalized language model suggestions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SEVASTJANOVA, Rita, Hanna HAUPTMANN, Sebastian DETERDING, Mennatallah EL-ASSADY, 2024. Personalized Language Model Selection Through Gamified Elicitation of Contrastive Concept Preferences. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(8), S. 5449-5465. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2023.3296905
BibTex
@article{Sevastjanova2024Perso-70466,
  year={2024},
  doi={10.1109/tvcg.2023.3296905},
  title={Personalized Language Model Selection Through Gamified Elicitation of Contrastive Concept Preferences},
  number={8},
  volume={30},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={5449--5465},
  author={Sevastjanova, Rita and Hauptmann, Hanna and Deterding, Sebastian and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70466">
    <dc:creator>Hauptmann, Hanna</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dc:contributor>Hauptmann, Hanna</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Deterding, Sebastian</dc:creator>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:abstract>Language models are widely used for different Natural Language Processing tasks while suffering from a lack of personalization. Personalization can be achieved by, e.g., fine-tuning the model on training data that is created by the user (e.g., social media posts). Previous work shows that the acquisition of such data can be challenging. Instead of adapting the model's parameters, we thus suggest selecting a model that matches the user's mental model of different thematic concepts in language. In this article, we attempt to capture such individual language understanding of users. In this process, two challenges have to be considered. First, we need to counteract disengagement since the task of communicating one's language understanding typically encompasses repetitive and time-consuming actions. Second, we need to enable users to externalize their mental models in different contexts, considering that language use changes depending on the environment. In this article, we integrate methods of gamification into a visual analytics (VA) workflow to engage users in sharing their knowledge within various contexts. In particular, we contribute the design of a gameful VA playground called Concept Universe. During the four-phased game, the users build personalized concept descriptions by explaining given concept names through representative keywords. Based on their performance, the system reacts with constant visual, verbal, and auditory feedback. We evaluate the system in a user study with six participants, showing that users are engaged and provide more specific input when facing a virtual opponent. We use the generated concepts to make personalized language model suggestions.</dcterms:abstract>
    <dc:contributor>Deterding, Sebastian</dc:contributor>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-26T08:16:53Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Personalized Language Model Selection Through Gamified Elicitation of Contrastive Concept Preferences</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-26T08:16:53Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70466"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen