Publikation:

Mixed fuzzy rule formation

Lade...
Vorschaubild

Dateien

Mixed_fuzzy_rule_formation.pdf
Mixed_fuzzy_rule_formation.pdfGröße: 153.8 KBDownloads: 379

Datum

2003

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Approximate Reasoning. 2003, 32, pp. 67-84. Available under: doi: 10.1016/S0888-613X(02)00077-4

Zusammenfassung

Many fuzzy rule induction algorithms have been proposed during the past decade or so. Most of these algorithms tend to scale badly with large dimensions of the feature space and in addition have trouble dealing with different feature types or noisy data. In this paper, an algorithm is proposed that extracts a set of so called mixed fuzzy rules. These rules can be extracted from feature spaces with diverse types of attributes and handle the corresponding different types of constraints in parallel. The extracted rules depend on individual subsets of only few attributes, which is especially useful in high dimensional feature spaces. The algorithm along with results on several classification benchmarks is presented and how this method can be extended to handle outliers or noisy training instances is sketched briefly as well.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Fuzzy rules, Rule formation, Rule induction, Mixed rules, Explorative data analysis, Data mining, Outliers, Model hierarchy

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., 2003. Mixed fuzzy rule formation. In: International Journal of Approximate Reasoning. 2003, 32, pp. 67-84. Available under: doi: 10.1016/S0888-613X(02)00077-4
BibTex
@article{Berthold2003Mixed-5414,
  year={2003},
  doi={10.1016/S0888-613X(02)00077-4},
  title={Mixed fuzzy rule formation},
  volume={32},
  journal={International Journal of Approximate Reasoning},
  pages={67--84},
  author={Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5414">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5414/1/Mixed_fuzzy_rule_formation.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Mixed fuzzy rule formation</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:10Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5414"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:10Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:issued>2003</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5414/1/Mixed_fuzzy_rule_formation.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>First publ. in: International Journal of Approximate Reasoning 32 (2003), pp. 67-84</dcterms:bibliographicCitation>
    <dcterms:abstract xml:lang="eng">Many fuzzy rule induction algorithms have been proposed during the past decade or so. Most of these algorithms tend to scale badly with large dimensions of the feature space and in addition have trouble dealing with different feature types or noisy data. In this paper, an algorithm is proposed that extracts a set of so called mixed fuzzy rules. These rules can be extracted from feature spaces with diverse types of attributes and handle the corresponding different types of constraints in parallel. The extracted rules depend on individual subsets of only few attributes, which is especially useful in high dimensional feature spaces. The algorithm along with results on several classification benchmarks is presented and how this method can be extended to handle outliers or noisy training instances is sketched briefly as well.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen