Publikation: Mixed fuzzy rule formation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many fuzzy rule induction algorithms have been proposed during the past decade or so. Most of these algorithms tend to scale badly with large dimensions of the feature space and in addition have trouble dealing with different feature types or noisy data. In this paper, an algorithm is proposed that extracts a set of so called mixed fuzzy rules. These rules can be extracted from feature spaces with diverse types of attributes and handle the corresponding different types of constraints in parallel. The extracted rules depend on individual subsets of only few attributes, which is especially useful in high dimensional feature spaces. The algorithm along with results on several classification benchmarks is presented and how this method can be extended to handle outliers or noisy training instances is sketched briefly as well.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., 2003. Mixed fuzzy rule formation. In: International Journal of Approximate Reasoning. 2003, 32, pp. 67-84. Available under: doi: 10.1016/S0888-613X(02)00077-4BibTex
@article{Berthold2003Mixed-5414, year={2003}, doi={10.1016/S0888-613X(02)00077-4}, title={Mixed fuzzy rule formation}, volume={32}, journal={International Journal of Approximate Reasoning}, pages={67--84}, author={Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5414"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5414/1/Mixed_fuzzy_rule_formation.pdf"/> <dc:format>application/pdf</dc:format> <dcterms:title>Mixed fuzzy rule formation</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:10Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5414"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:10Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>2003</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5414/1/Mixed_fuzzy_rule_formation.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>First publ. in: International Journal of Approximate Reasoning 32 (2003), pp. 67-84</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Many fuzzy rule induction algorithms have been proposed during the past decade or so. Most of these algorithms tend to scale badly with large dimensions of the feature space and in addition have trouble dealing with different feature types or noisy data. In this paper, an algorithm is proposed that extracts a set of so called mixed fuzzy rules. These rules can be extracted from feature spaces with diverse types of attributes and handle the corresponding different types of constraints in parallel. The extracted rules depend on individual subsets of only few attributes, which is especially useful in high dimensional feature spaces. The algorithm along with results on several classification benchmarks is presented and how this method can be extended to handle outliers or noisy training instances is sketched briefly as well.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>