Publikation:

Stronger together : comparing and integrating camera trap, visual, and dung survey data in tropical forest communities

Lade...
Vorschaubild

Dateien

Nunez_2-1nlddymne4nrb3.pdf
Nunez_2-1nlddymne4nrb3.pdfGröße: 1.3 MBDownloads: 153

Datum

2019

Autor:innen

Froese, Graden
Meier, Amelia C.
Beirne, Chris
Depenthal, Johanna
Kim, Seokmin
Ebang Mbélé, Alex
Nordseth, Anna
Poulsen, John R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Ecosphere. Ecological Society of America (ESA). 2019, 10(12), e02965. eISSN 2150-8925. Available under: doi: 10.1002/ecs2.2965

Zusammenfassung

Accurate estimations of animal populations are necessary for management, conservation, and policy decisions. However, methods for surveying animal communities disproportionately represent specific groups or guilds. For example, transect surveys can provide robust data for large arboreal species but underestimate cryptic or small‐bodied terrestrial species, whereas camera traps have the inverse tendency. The integration of information from multiple methodologies would provide the most complete inference on population size or responses to putative covariates, yet a simple, robust framework that allows integration and comparison of multiple data sources has been lacking. We use 27,813 counts of 35 species or species groups derived from concurrent visual transects, dung transects, and camera trap surveys in tropical forests and compare them within a generalized joint attribute modeling framework (GJAM) that both compares and integrates field‐collected dung, visual, and camera trap data to quantify the species‐ and trait‐specific differences in detection for each method. The effectiveness of survey method was strongly dependent on species, as well as animal traits. These differences in effectiveness contributed to meaningful differences in the reported strength of a known important covariate for animal communities (distance to nearest village). Data fusion through GJAM allows clear and unambiguous comparisons of the counts provided from each different methodology, the incorporation of trait information, and fusion of all three data streams to generate a more complete estimate of the effects of an anthropogenic disturbance covariate. Research and conservation resources are extremely limited, which often means that field campaigns attempt to maximize the amount of information gathered especially in remote, hard‐to‐access areas. Advances in these understudied areas will be accelerated by analytical methods that can fully leverage the total body of diverse biodiversity field data, even when they are collected using different methods. We demonstrate that survey methods vary in their effectiveness for counting species based on biological traits, but more importantly that generative models like GJAM can integrate data from multiple sources in one cohesive statistical framework to make improved inference in understudied environments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

data fusion, joint species distribution modeling, population estimation, survey comparison

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NUNEZ, Chase L., Graden FROESE, Amelia C. MEIER, Chris BEIRNE, Johanna DEPENTHAL, Seokmin KIM, Alex EBANG MBÉLÉ, Anna NORDSETH, John R. POULSEN, 2019. Stronger together : comparing and integrating camera trap, visual, and dung survey data in tropical forest communities. In: Ecosphere. Ecological Society of America (ESA). 2019, 10(12), e02965. eISSN 2150-8925. Available under: doi: 10.1002/ecs2.2965
BibTex
@article{Nunez2019-12-19Stron-52866,
  year={2019},
  doi={10.1002/ecs2.2965},
  title={Stronger together : comparing and integrating camera trap, visual, and dung survey data in tropical forest communities},
  number={12},
  volume={10},
  journal={Ecosphere},
  author={Nunez, Chase L. and Froese, Graden and Meier, Amelia C. and Beirne, Chris and Depenthal, Johanna and Kim, Seokmin and Ebang Mbélé, Alex and Nordseth, Anna and Poulsen, John R.},
  note={Article Number: e02965}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52866">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52866/3/Nunez_2-1nlddymne4nrb3.pdf"/>
    <dcterms:issued>2019-12-19</dcterms:issued>
    <dc:creator>Kim, Seokmin</dc:creator>
    <dc:creator>Meier, Amelia C.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52866/3/Nunez_2-1nlddymne4nrb3.pdf"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Ebang Mbélé, Alex</dc:creator>
    <dcterms:title>Stronger together : comparing and integrating camera trap, visual, and dung survey data in tropical forest communities</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Ebang Mbélé, Alex</dc:contributor>
    <dc:creator>Depenthal, Johanna</dc:creator>
    <dc:creator>Froese, Graden</dc:creator>
    <dc:creator>Beirne, Chris</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Poulsen, John R.</dc:creator>
    <dc:contributor>Nordseth, Anna</dc:contributor>
    <dc:contributor>Depenthal, Johanna</dc:contributor>
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <dc:contributor>Poulsen, John R.</dc:contributor>
    <dc:contributor>Nunez, Chase L.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:17:37Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Accurate estimations of animal populations are necessary for management, conservation, and policy decisions. However, methods for surveying animal communities disproportionately represent specific groups or guilds. For example, transect surveys can provide robust data for large arboreal species but underestimate cryptic or small‐bodied terrestrial species, whereas camera traps have the inverse tendency. The integration of information from multiple methodologies would provide the most complete inference on population size or responses to putative covariates, yet a simple, robust framework that allows integration and comparison of multiple data sources has been lacking. We use 27,813 counts of 35 species or species groups derived from concurrent visual transects, dung transects, and camera trap surveys in tropical forests and compare them within a generalized joint attribute modeling framework (GJAM) that both compares and integrates field‐collected dung, visual, and camera trap data to quantify the species‐ and trait‐specific differences in detection for each method. The effectiveness of survey method was strongly dependent on species, as well as animal traits. These differences in effectiveness contributed to meaningful differences in the reported strength of a known important covariate for animal communities (distance to nearest village). Data fusion through GJAM allows clear and unambiguous comparisons of the counts provided from each different methodology, the incorporation of trait information, and fusion of all three data streams to generate a more complete estimate of the effects of an anthropogenic disturbance covariate. Research and conservation resources are extremely limited, which often means that field campaigns attempt to maximize the amount of information gathered especially in remote, hard‐to‐access areas. Advances in these understudied areas will be accelerated by analytical methods that can fully leverage the total body of diverse biodiversity field data, even when they are collected using different methods. We demonstrate that survey methods vary in their effectiveness for counting species based on biological traits, but more importantly that generative models like GJAM can integrate data from multiple sources in one cohesive statistical framework to make improved inference in understudied environments.</dcterms:abstract>
    <dc:creator>Nunez, Chase L.</dc:creator>
    <dc:creator>Nordseth, Anna</dc:creator>
    <dc:contributor>Beirne, Chris</dc:contributor>
    <dc:contributor>Kim, Seokmin</dc:contributor>
    <dc:contributor>Froese, Graden</dc:contributor>
    <dc:contributor>Meier, Amelia C.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52866"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:17:37Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen