Publikation:

Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Gkeka, Paraskevi
Stoltz, Gabriel
Barati Farimani, Amir
Belkacemi, Zineb
Ceriotti, Michele
Chodera, John D.
Dinner, Aaron R.
Ferguson, Andrew L.
Maillet, Jean-Bernard
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2020, 16(8), pp. 4757-4775. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.0c00355

Zusammenfassung

Machine learning encompasses tools and algorithms that are now becoming popular in almost all scientific and technological fields. This is true for molecular dynamics as well, where machine learning offers promises of extracting valuable information from the enormous amounts of data generated by simulation of complex systems. We provide here a review of our current understanding of goals, benefits, and limitations of machine learning techniques for computational studies on atomistic systems, focusing on the construction of empirical force fields from ab initio databases and the determination of reaction coordinates for free energy computation and enhanced sampling.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GKEKA, Paraskevi, Gabriel STOLTZ, Amir BARATI FARIMANI, Zineb BELKACEMI, Michele CERIOTTI, John D. CHODERA, Aaron R. DINNER, Andrew L. FERGUSON, Jean-Bernard MAILLET, Christine PETER, 2020. Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems. In: Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2020, 16(8), pp. 4757-4775. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.0c00355
BibTex
@article{Gkeka2020-08-11Machi-50937,
  year={2020},
  doi={10.1021/acs.jctc.0c00355},
  title={Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems},
  number={8},
  volume={16},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation (JCTC)},
  pages={4757--4775},
  author={Gkeka, Paraskevi and Stoltz, Gabriel and Barati Farimani, Amir and Belkacemi, Zineb and Ceriotti, Michele and Chodera, John D. and Dinner, Aaron R. and Ferguson, Andrew L. and Maillet, Jean-Bernard and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50937">
    <dc:contributor>Dinner, Aaron R.</dc:contributor>
    <dc:contributor>Ceriotti, Michele</dc:contributor>
    <dc:contributor>Barati Farimani, Amir</dc:contributor>
    <dc:creator>Gkeka, Paraskevi</dc:creator>
    <dcterms:issued>2020-08-11</dcterms:issued>
    <dc:creator>Dinner, Aaron R.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T07:39:46Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Stoltz, Gabriel</dc:contributor>
    <dc:creator>Maillet, Jean-Bernard</dc:creator>
    <dc:creator>Ceriotti, Michele</dc:creator>
    <dc:contributor>Gkeka, Paraskevi</dc:contributor>
    <dc:creator>Stoltz, Gabriel</dc:creator>
    <dc:creator>Barati Farimani, Amir</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:contributor>Maillet, Jean-Bernard</dc:contributor>
    <dc:contributor>Chodera, John D.</dc:contributor>
    <dc:creator>Belkacemi, Zineb</dc:creator>
    <dc:creator>Peter, Christine</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:title>Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Chodera, John D.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50937"/>
    <dcterms:abstract xml:lang="eng">Machine learning encompasses tools and algorithms that are now becoming popular in almost all scientific and technological fields. This is true for molecular dynamics as well, where machine learning offers promises of extracting valuable information from the enormous amounts of data generated by simulation of complex systems. We provide here a review of our current understanding of goals, benefits, and limitations of machine learning techniques for computational studies on atomistic systems, focusing on the construction of empirical force fields from ab initio databases and the determination of reaction coordinates for free energy computation and enhanced sampling.</dcterms:abstract>
    <dc:contributor>Belkacemi, Zineb</dc:contributor>
    <dc:contributor>Ferguson, Andrew L.</dc:contributor>
    <dc:creator>Ferguson, Andrew L.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T07:39:46Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen