Representation of increasing convex functionals with countably additive measures
Representation of increasing convex functionals with countably additive measures
No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Studia Mathematica ; 260 (2021). - pp. 121-140. - Institute of Mathematics, Polish Academy of Sciences. - ISSN 0039-3223. - eISSN 1730-6337
Abstract
We derive two types of representation results for increasing convex functionals in terms of countably additive measures. The first is a max-representation of functionals defined on spaces of real-valued continuous functions and the second a sup-representation of functionals defined on spaces of real-valued Borel measurable functions. Our assumptions consist of sequential semicontinuity conditions which are easy to verify in different applications.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
CHERIDITO, Patrick, Michael KUPPER, Ludovic TANGPI, 2021. Representation of increasing convex functionals with countably additive measures. In: Studia Mathematica. Institute of Mathematics, Polish Academy of Sciences. 260, pp. 121-140. ISSN 0039-3223. eISSN 1730-6337. Available under: doi: 10.4064/sm181107-16-2BibTex
@article{Cheridito2021Repre-31211.2, year={2021}, doi={10.4064/sm181107-16-2}, title={Representation of increasing convex functionals with countably additive measures}, volume={260}, issn={0039-3223}, journal={Studia Mathematica}, pages={121--140}, author={Cheridito, Patrick and Kupper, Michael and Tangpi, Ludovic} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31211.2"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Cheridito, Patrick</dc:creator> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Cheridito, Patrick</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-13T10:52:35Z</dc:date> <dcterms:abstract xml:lang="eng">We derive two types of representation results for increasing convex functionals in terms of countably additive measures. The first is a max-representation of functionals defined on spaces of real-valued continuous functions and the second a sup-representation of functionals defined on spaces of real-valued Borel measurable functions. Our assumptions consist of sequential semicontinuity conditions which are easy to verify in different applications.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Kupper, Michael</dc:creator> <dc:contributor>Kupper, Michael</dc:contributor> <dcterms:title>Representation of increasing convex functionals with countably additive measures</dcterms:title> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dc:creator>Tangpi, Ludovic</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/31211.2"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-13T10:52:35Z</dcterms:available> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown