Publikation: Estimating transmission noise on networks from stationary local order
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study networks of nodes characterised by binary traits that change both endogenously and through nearest-neighbour interaction. Our analytical results show that those traits can be ranked according to the noisiness of their transmission using only measures of order in the stationary state. Crucially, this ranking is independent of network topology. As an example, we explain why, in line with a long-standing hypothesis, the relative stability of the structural traits of languages can be estimated from their geospatial distribution. We conjecture that similar inferences may be possible in a more general class of Markovian systems. Consequently, in many empirical domains where longitudinal information is not easily available the propensities of traits to change could be estimated from spatial data alone.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KITCHING, Christopher R., Henri KAUHANEN, Jordan ABBOTT, Deepthi GOPAL, Ricardo BERMÚDEZ-OTERO, Tobias GALLA, 2025. Estimating transmission noise on networks from stationary local order. In: Europhysics Letters. IOP Publishing. 2025, 150(3), 31002. ISSN 0295-5075. eISSN 1286-4854. Verfügbar unter: doi: 10.1209/0295-5075/adc9deBibTex
@article{Kitching2025-05-01Estim-73480, title={Estimating transmission noise on networks from stationary local order}, year={2025}, doi={10.1209/0295-5075/adc9de}, number={3}, volume={150}, issn={0295-5075}, journal={Europhysics Letters}, author={Kitching, Christopher R. and Kauhanen, Henri and Abbott, Jordan and Gopal, Deepthi and Bermúdez-Otero, Ricardo and Galla, Tobias}, note={Article Number: 31002} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73480"> <dc:creator>Kauhanen, Henri</dc:creator> <dc:creator>Galla, Tobias</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Abbott, Jordan</dc:contributor> <dc:contributor>Gopal, Deepthi</dc:contributor> <dc:creator>Abbott, Jordan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Bermúdez-Otero, Ricardo</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73480/1/Kitching_2-1nx4jhzdzjk0i8.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-30T09:37:06Z</dc:date> <dc:contributor>Galla, Tobias</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73480"/> <dc:contributor>Kitching, Christopher R.</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract>We study networks of nodes characterised by binary traits that change both endogenously and through nearest-neighbour interaction. Our analytical results show that those traits can be ranked according to the noisiness of their transmission using only measures of order in the stationary state. Crucially, this ranking is independent of network topology. As an example, we explain why, in line with a long-standing hypothesis, the relative stability of the structural traits of languages can be estimated from their geospatial distribution. We conjecture that similar inferences may be possible in a more general class of Markovian systems. Consequently, in many empirical domains where longitudinal information is not easily available the propensities of traits to change could be estimated from spatial data alone.</dcterms:abstract> <dcterms:title>Estimating transmission noise on networks from stationary local order</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73480/1/Kitching_2-1nx4jhzdzjk0i8.pdf"/> <dc:creator>Kitching, Christopher R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Bermúdez-Otero, Ricardo</dc:contributor> <dc:contributor>Kauhanen, Henri</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2025-05-01</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-30T09:37:06Z</dcterms:available> <dc:creator>Gopal, Deepthi</dc:creator> </rdf:Description> </rdf:RDF>