Publikation: Using Long‐Term Ecological Datasets to Unravel the Impacts of Short‐Term Meteorological Disturbances on Phytoplankton Communities
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Extreme meteorological events such as storms are increasing in frequency and intensity, but our knowledge of their impacts on aquatic ecosystems and emergent system properties is limited. Understanding the ecological impacts of storms on the dynamics of primary producers remains a challenge that needs to be addressed to assess the vulnerability of freshwater ecosystems to extreme weather conditions and climate change.
One promising approach to gain insights into storm impacts on phytoplankton community dynamics is to analyse long-term monitoring datasets. However, such an approach requires disentangling the impacts of short-term meteorological disturbances from the effects of the seasonal trajectories of meteorological conditions. To this end, we applied boosted regression tree models to phytoplankton time series from eight relatively large lakes on four continents, coupled with a procedure adapted to detect and quantify rare events.
Overall, the patterns and potential drivers we identified provide important insights into the responses of lakes to short-term meteorological events and highlight differences in the response of phytoplankton communities according to lake morphological characteristics. Our results indicated that deepened thermoclines and lake-specific combinations of drivers describing altered thermal structures caused deviations from the typical trajectories of seasonal phytoplankton succession. For shallow polymictic lakes, shifts in phytoplankton succession also depended on changes in light availability.
Overall, our study highlights the value of long-term monitoring to improve our understanding of phytoplankton sensitivity to short-term meteorological disturbances.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TRAN‐KHAC, Viet, Jonathan P. DOUBEK, Vijay PATIL, Jason D. STOCKWELL, Rita ADRIAN, Chun‐Wei CHANG, Gaël DUR, Aleksandra LEWANDOWSKA, James A. RUSAK, Dietmar STRAILE, 2025. Using Long‐Term Ecological Datasets to Unravel the Impacts of Short‐Term Meteorological Disturbances on Phytoplankton Communities. In: Freshwater Biology. Wiley. 2025, 70(5), e70023. ISSN 0046-5070. eISSN 1365-2427. Verfügbar unter: doi: 10.1111/fwb.70023BibTex
@article{TranKhac2025-05Using-73370, title={Using Long‐Term Ecological Datasets to Unravel the Impacts of Short‐Term Meteorological Disturbances on Phytoplankton Communities}, year={2025}, doi={10.1111/fwb.70023}, number={5}, volume={70}, issn={0046-5070}, journal={Freshwater Biology}, author={Tran‐Khac, Viet and Doubek, Jonathan P. and Patil, Vijay and Stockwell, Jason D. and Adrian, Rita and Chang, Chun‐Wei and Dur, Gaël and Lewandowska, Aleksandra and Rusak, James A. and Straile, Dietmar}, note={Article Number: e70023} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73370"> <dc:creator>Rusak, James A.</dc:creator> <dc:contributor>Rusak, James A.</dc:contributor> <dc:creator>Chang, Chun‐Wei</dc:creator> <dc:contributor>Tran‐Khac, Viet</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73370/1/Tran-Khac_2-1nxlqrzk5kv3g3.pdf"/> <dcterms:abstract>Extreme meteorological events such as storms are increasing in frequency and intensity, but our knowledge of their impacts on aquatic ecosystems and emergent system properties is limited. Understanding the ecological impacts of storms on the dynamics of primary producers remains a challenge that needs to be addressed to assess the vulnerability of freshwater ecosystems to extreme weather conditions and climate change. One promising approach to gain insights into storm impacts on phytoplankton community dynamics is to analyse long-term monitoring datasets. However, such an approach requires disentangling the impacts of short-term meteorological disturbances from the effects of the seasonal trajectories of meteorological conditions. To this end, we applied boosted regression tree models to phytoplankton time series from eight relatively large lakes on four continents, coupled with a procedure adapted to detect and quantify rare events. Overall, the patterns and potential drivers we identified provide important insights into the responses of lakes to short-term meteorological events and highlight differences in the response of phytoplankton communities according to lake morphological characteristics. Our results indicated that deepened thermoclines and lake-specific combinations of drivers describing altered thermal structures caused deviations from the typical trajectories of seasonal phytoplankton succession. For shallow polymictic lakes, shifts in phytoplankton succession also depended on changes in light availability. Overall, our study highlights the value of long-term monitoring to improve our understanding of phytoplankton sensitivity to short-term meteorological disturbances.</dcterms:abstract> <dc:contributor>Straile, Dietmar</dc:contributor> <dc:creator>Stockwell, Jason D.</dc:creator> <dc:creator>Straile, Dietmar</dc:creator> <dc:creator>Doubek, Jonathan P.</dc:creator> <dc:creator>Patil, Vijay</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-20T09:06:34Z</dcterms:available> <dc:creator>Adrian, Rita</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Lewandowska, Aleksandra</dc:contributor> <dc:creator>Dur, Gaël</dc:creator> <dcterms:title>Using Long‐Term Ecological Datasets to Unravel the Impacts of Short‐Term Meteorological Disturbances on Phytoplankton Communities</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:contributor>Stockwell, Jason D.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73370"/> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dc:contributor>Doubek, Jonathan P.</dc:contributor> <dc:contributor>Chang, Chun‐Wei</dc:contributor> <dc:creator>Lewandowska, Aleksandra</dc:creator> <dc:creator>Tran‐Khac, Viet</dc:creator> <dc:contributor>Dur, Gaël</dc:contributor> <dc:contributor>Patil, Vijay</dc:contributor> <dc:contributor>Adrian, Rita</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-20T09:06:34Z</dc:date> <dcterms:issued>2025-05</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73370/1/Tran-Khac_2-1nxlqrzk5kv3g3.pdf"/> </rdf:Description> </rdf:RDF>