Publikation:

Predicting invasion success of naturalized cultivated plants in China

Lade...
Vorschaubild

Dateien

Dong_2-1o3j5z9gufuns4.pdf
Dong_2-1o3j5z9gufuns4.pdfGröße: 1.15 MBDownloads: ?

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

National Natural Science Foundation of China: 31500331
National Natural Science Foundation of China: 32071527

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

31. März 2026

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Applied Ecology. Wiley. 2025, 62(3), S. 651-660. ISSN 0021-8901. eISSN 1365-2664. Verfügbar unter: doi: 10.1111/1365-2664.14873

Zusammenfassung

  1. Plant invasions pose significant threats to native ecosystems, human health, and global economies. However, the complex and multidimensional nature of factors influencing plant invasions makes it challenging to predict and interpret their invasion success accurately.

  2. Using a robust machine learning algorithm, random forest, and an extensive suite of characteristics related to environmental niches, species traits, and propagule pressure, we developed a classification model to predict the invasion success of naturalized cultivated plants in China. Based on the final optimal model, we evaluated the relative importance of individual and grouped variables and their prediction performance.

  3. Our study identified key individual variables within each of three groupings: climatic suitability and native range size (environmental niches), phylogenetic distance to the closest native taxon and vegetative propagation mode (species traits), and the number of botanical gardens and provinces where species were cultivated (propagule pressure). Remarkably, when grouped variables were evaluated, the relative importance of grouped variables increased dramatically—by 13.5–17.7 times—compared with the cumulative importance of individual variables within a category. However, the relative importance of one category was primarily due to the number of variables within each category rather than its inherent characteristics.

  4. Synthesis and applications . Our findings emphasize the necessity of developing data‐driven predictive tools for effective invasion risk assessment using large datasets. By identifying key individual variables, we recommend prioritizing surveillance of alien plant species with large native ranges and high climatic suitability. By evaluating grouped variables, we emphasize the significance of grouped variables in enhancing model interpretability by providing deeper insights into the complex interactions among individual factors within each predefined category. This comprehensive approach can not only identify the most influential predictors of invasion success but also equip policymakers with evidence‐based strategies for surveillance, early detection, and targeted intervention of invasive plants.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
Data from: Predicting invasion success of cultivated naturalized plants in China
(2025) Dong, Bi-Cheng; Dong, Ran; Yang, Qiang; Kinlock, Nicole L.; Yu, Fei-Hai; van Kleunen, Mark

Zitieren

ISO 690DONG, Bi-Cheng, Ran DONG, Qiang YANG, Nicole L. KINLOCK, Fei‐Hai YU, Mark VAN KLEUNEN, 2025. Predicting invasion success of naturalized cultivated plants in China. In: Journal of Applied Ecology. Wiley. 2025, 62(3), S. 651-660. ISSN 0021-8901. eISSN 1365-2664. Verfügbar unter: doi: 10.1111/1365-2664.14873
BibTex
@article{Dong2025-03Predi-72092,
  title={Predicting invasion success of naturalized cultivated plants in China},
  year={2025},
  doi={10.1111/1365-2664.14873},
  number={3},
  volume={62},
  issn={0021-8901},
  journal={Journal of Applied Ecology},
  pages={651--660},
  author={Dong, Bi-Cheng and Dong, Ran and Yang, Qiang and Kinlock, Nicole L. and Yu, Fei‐Hai and van Kleunen, Mark}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72092">
    <dc:creator>Dong, Ran</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Yu, Fei‐Hai</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72092"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-29T12:24:57Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-29T12:24:57Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kinlock, Nicole L.</dc:creator>
    <dcterms:issued>2025-03</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:title>Predicting invasion success of naturalized cultivated plants in China</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72092/1/Dong_2-1o3j5z9gufuns4.pdf"/>
    <dc:contributor>Yu, Fei‐Hai</dc:contributor>
    <dc:creator>Dong, Bi-Cheng</dc:creator>
    <dc:creator>Yang, Qiang</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72092/1/Dong_2-1o3j5z9gufuns4.pdf"/>
    <dc:contributor>van Kleunen, Mark</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>van Kleunen, Mark</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kinlock, Nicole L.</dc:contributor>
    <dc:contributor>Dong, Bi-Cheng</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Dong, Ran</dc:contributor>
    <dc:contributor>Yang, Qiang</dc:contributor>
    <dcterms:abstract>1. Plant invasions pose significant threats to native ecosystems, human health, and global economies. However, the complex and multidimensional nature of factors influencing plant invasions makes it challenging to predict and interpret their invasion success accurately. 

2. Using a robust machine learning algorithm, random forest, and an extensive suite of characteristics related to environmental niches, species traits, and propagule pressure, we developed a classification model to predict the invasion success of naturalized cultivated plants in China. Based on the final optimal model, we evaluated the relative importance of individual and grouped variables and their prediction performance. 

3. Our study identified key individual variables within each of three groupings: climatic suitability and native range size (environmental niches), phylogenetic distance to the closest native taxon and vegetative propagation mode (species traits), and the number of botanical gardens and provinces where species were cultivated (propagule pressure). Remarkably, when grouped variables were evaluated, the relative importance of grouped variables increased dramatically—by 13.5–17.7 times—compared with the cumulative importance of individual variables within a category. However, the relative importance of one category was primarily due to the number of variables within each category rather than its inherent characteristics. 

4. Synthesis and applications . Our findings emphasize the necessity of developing data‐driven predictive tools for effective invasion risk assessment using large datasets. By identifying key individual variables, we recommend prioritizing surveillance of alien plant species with large native ranges and high climatic suitability. By evaluating grouped variables, we emphasize the significance of grouped variables in enhancing model interpretability by providing deeper insights into the complex interactions among individual factors within each predefined category. This comprehensive approach can not only identify the most influential predictors of invasion success but also equip policymakers with evidence‐based strategies for surveillance, early detection, and targeted intervention of invasive plants.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen