Publikation: Predicting invasion success of naturalized cultivated plants in China
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
National Natural Science Foundation of China: 32071527
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
-
Plant invasions pose significant threats to native ecosystems, human health, and global economies. However, the complex and multidimensional nature of factors influencing plant invasions makes it challenging to predict and interpret their invasion success accurately.
-
Using a robust machine learning algorithm, random forest, and an extensive suite of characteristics related to environmental niches, species traits, and propagule pressure, we developed a classification model to predict the invasion success of naturalized cultivated plants in China. Based on the final optimal model, we evaluated the relative importance of individual and grouped variables and their prediction performance.
-
Our study identified key individual variables within each of three groupings: climatic suitability and native range size (environmental niches), phylogenetic distance to the closest native taxon and vegetative propagation mode (species traits), and the number of botanical gardens and provinces where species were cultivated (propagule pressure). Remarkably, when grouped variables were evaluated, the relative importance of grouped variables increased dramatically—by 13.5–17.7 times—compared with the cumulative importance of individual variables within a category. However, the relative importance of one category was primarily due to the number of variables within each category rather than its inherent characteristics.
-
Synthesis and applications . Our findings emphasize the necessity of developing data‐driven predictive tools for effective invasion risk assessment using large datasets. By identifying key individual variables, we recommend prioritizing surveillance of alien plant species with large native ranges and high climatic suitability. By evaluating grouped variables, we emphasize the significance of grouped variables in enhancing model interpretability by providing deeper insights into the complex interactions among individual factors within each predefined category. This comprehensive approach can not only identify the most influential predictors of invasion success but also equip policymakers with evidence‐based strategies for surveillance, early detection, and targeted intervention of invasive plants.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DONG, Bi-Cheng, Ran DONG, Qiang YANG, Nicole L. KINLOCK, Fei‐Hai YU, Mark VAN KLEUNEN, 2025. Predicting invasion success of naturalized cultivated plants in China. In: Journal of Applied Ecology. Wiley. 2025, 62(3), S. 651-660. ISSN 0021-8901. eISSN 1365-2664. Verfügbar unter: doi: 10.1111/1365-2664.14873BibTex
@article{Dong2025-03Predi-72092, title={Predicting invasion success of naturalized cultivated plants in China}, year={2025}, doi={10.1111/1365-2664.14873}, number={3}, volume={62}, issn={0021-8901}, journal={Journal of Applied Ecology}, pages={651--660}, author={Dong, Bi-Cheng and Dong, Ran and Yang, Qiang and Kinlock, Nicole L. and Yu, Fei‐Hai and van Kleunen, Mark} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72092"> <dc:creator>Dong, Ran</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Yu, Fei‐Hai</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72092"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-29T12:24:57Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-29T12:24:57Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kinlock, Nicole L.</dc:creator> <dcterms:issued>2025-03</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>Predicting invasion success of naturalized cultivated plants in China</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72092/1/Dong_2-1o3j5z9gufuns4.pdf"/> <dc:contributor>Yu, Fei‐Hai</dc:contributor> <dc:creator>Dong, Bi-Cheng</dc:creator> <dc:creator>Yang, Qiang</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72092/1/Dong_2-1o3j5z9gufuns4.pdf"/> <dc:contributor>van Kleunen, Mark</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>van Kleunen, Mark</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kinlock, Nicole L.</dc:contributor> <dc:contributor>Dong, Bi-Cheng</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Dong, Ran</dc:contributor> <dc:contributor>Yang, Qiang</dc:contributor> <dcterms:abstract>1. Plant invasions pose significant threats to native ecosystems, human health, and global economies. However, the complex and multidimensional nature of factors influencing plant invasions makes it challenging to predict and interpret their invasion success accurately. 2. Using a robust machine learning algorithm, random forest, and an extensive suite of characteristics related to environmental niches, species traits, and propagule pressure, we developed a classification model to predict the invasion success of naturalized cultivated plants in China. Based on the final optimal model, we evaluated the relative importance of individual and grouped variables and their prediction performance. 3. Our study identified key individual variables within each of three groupings: climatic suitability and native range size (environmental niches), phylogenetic distance to the closest native taxon and vegetative propagation mode (species traits), and the number of botanical gardens and provinces where species were cultivated (propagule pressure). Remarkably, when grouped variables were evaluated, the relative importance of grouped variables increased dramatically—by 13.5–17.7 times—compared with the cumulative importance of individual variables within a category. However, the relative importance of one category was primarily due to the number of variables within each category rather than its inherent characteristics. 4. Synthesis and applications . Our findings emphasize the necessity of developing data‐driven predictive tools for effective invasion risk assessment using large datasets. By identifying key individual variables, we recommend prioritizing surveillance of alien plant species with large native ranges and high climatic suitability. By evaluating grouped variables, we emphasize the significance of grouped variables in enhancing model interpretability by providing deeper insights into the complex interactions among individual factors within each predefined category. This comprehensive approach can not only identify the most influential predictors of invasion success but also equip policymakers with evidence‐based strategies for surveillance, early detection, and targeted intervention of invasive plants.</dcterms:abstract> </rdf:Description> </rdf:RDF>