Publikation: Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Establishing the nature of the ground state of the Heisenberg antiferromagnet (HAFM) on the kagome lattice is well-known to be a prohibitively difficult problem for classical computers. Here, we give a detailed proposal for a variational quantum eigensolver (VQE) intending to solve this physical problem on a quantum computer. At the same time, this VQE constitutes an explicit experimental proposal for showing a useful quantum advantage on noisy intermediate-scale quantum devices because of its natural hardware compatibility. We classically emulate noiseless and noisy quantum computers with either 2D-grid or all-to-all connectivity and simulate patches of the kagome HAFM of up to 20 sites. In the noiseless case, the ground-state energy, as found by the VQE, approaches the true ground-state energy exponentially as a function of the circuit depth. Furthermore, VQEs for the HAFM on any graph can inherently perform their quantum computations in a decoherence-free subspace that protects against collective longitudinal and collective transversal noise, adding to the noise resilience of these algorithms. Nevertheless, the extent of the effects of other noise types suggests the need for error mitigation and performance targets alternative to high-fidelity ground-state preparation, even for essentially hardware-native VQEs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KATTEMÖLLE, Joris, Jasper VAN WEZEL, 2022. Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. In: Physical Review B. American Physical Society (APS). 2022, 106(21), 214429. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.106.214429BibTex
@article{Kattemolle2022Varia-59762, year={2022}, doi={10.1103/PhysRevB.106.214429}, title={Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice}, number={21}, volume={106}, issn={2469-9950}, journal={Physical Review B}, author={Kattemölle, Joris and van Wezel, Jasper}, note={Article Number: 214429} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59762"> <dc:language>eng</dc:language> <dc:contributor>Kattemölle, Joris</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T07:35:03Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T07:35:03Z</dc:date> <dcterms:abstract xml:lang="eng">Establishing the nature of the ground state of the Heisenberg antiferromagnet (HAFM) on the kagome lattice is well-known to be a prohibitively difficult problem for classical computers. Here, we give a detailed proposal for a variational quantum eigensolver (VQE) intending to solve this physical problem on a quantum computer. At the same time, this VQE constitutes an explicit experimental proposal for showing a useful quantum advantage on noisy intermediate-scale quantum devices because of its natural hardware compatibility. We classically emulate noiseless and noisy quantum computers with either 2D-grid or all-to-all connectivity and simulate patches of the kagome HAFM of up to 20 sites. In the noiseless case, the ground-state energy, as found by the VQE, approaches the true ground-state energy exponentially as a function of the circuit depth. Furthermore, VQEs for the HAFM on any graph can inherently perform their quantum computations in a decoherence-free subspace that protects against collective longitudinal and collective transversal noise, adding to the noise resilience of these algorithms. Nevertheless, the extent of the effects of other noise types suggests the need for error mitigation and performance targets alternative to high-fidelity ground-state preparation, even for essentially hardware-native VQEs.</dcterms:abstract> <dc:creator>Kattemölle, Joris</dc:creator> <dc:contributor>van Wezel, Jasper</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dcterms:title>Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice</dcterms:title> <dc:creator>van Wezel, Jasper</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59762"/> </rdf:Description> </rdf:RDF>