Publikation: Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau–Lifshitz–Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we achieve a resolution of 13 nm. The results demonstrate that ptychographic imaging can also recover magnetic contrast in the presence of a strong topological variation and is generally applicable toward magnetic samples requiring ultimate resolution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRÄFE, Joachim, Maxim SKRIPNIK, Georg DIETERLE, Felix HAERING, Markus WEIGAND, Iuliia BYKOVA, Nick TRÄGER, Hermann STOLL, Tolek TYLISZCZAK, Ulrich NOWAK, 2020. Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices. In: AIP Advances. American Institute of Physics. 2020, 10(12), 125122. eISSN 2158-3226. Available under: doi: 10.1063/5.0025784BibTex
@article{Grafe2020Ptych-52310, year={2020}, doi={10.1063/5.0025784}, title={Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices}, number={12}, volume={10}, journal={AIP Advances}, author={Gräfe, Joachim and Skripnik, Maxim and Dieterle, Georg and Haering, Felix and Weigand, Markus and Bykova, Iuliia and Träger, Nick and Stoll, Hermann and Tyliszczak, Tolek and Nowak, Ulrich}, note={Article Number: 125122} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52310"> <dc:creator>Stoll, Hermann</dc:creator> <dc:creator>Träger, Nick</dc:creator> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Bykova, Iuliia</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52310/1/Gr%c3%a4fe_2-1od0pcjem3sho9.pdf"/> <dcterms:abstract xml:lang="eng">Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau–Lifshitz–Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we achieve a resolution of 13 nm. The results demonstrate that ptychographic imaging can also recover magnetic contrast in the presence of a strong topological variation and is generally applicable toward magnetic samples requiring ultimate resolution.</dcterms:abstract> <dc:contributor>Nowak, Ulrich</dc:contributor> <dc:contributor>Weigand, Markus</dc:contributor> <dc:contributor>Stoll, Hermann</dc:contributor> <dc:creator>Skripnik, Maxim</dc:creator> <dc:creator>Nowak, Ulrich</dc:creator> <dc:contributor>Träger, Nick</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Gräfe, Joachim</dc:contributor> <dcterms:title>Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices</dcterms:title> <dc:creator>Bykova, Iuliia</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52310/1/Gr%c3%a4fe_2-1od0pcjem3sho9.pdf"/> <dc:contributor>Skripnik, Maxim</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Gräfe, Joachim</dc:creator> <dc:creator>Weigand, Markus</dc:creator> <dc:contributor>Haering, Felix</dc:contributor> <dc:contributor>Tyliszczak, Tolek</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52310"/> <dc:creator>Haering, Felix</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-07T13:44:39Z</dcterms:available> <dc:contributor>Dieterle, Georg</dc:contributor> <dc:creator>Dieterle, Georg</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-07T13:44:39Z</dc:date> <dc:creator>Tyliszczak, Tolek</dc:creator> </rdf:Description> </rdf:RDF>