Publikation: Classical Many-Body Time Crystals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Discrete time crystals are a many-body state of matter where the extensive system’s dynamics are slower than the forces acting on it. Nowadays, there is a growing debate regarding the specific properties required to demonstrate such a many-body state, alongside several experimental realizations. In this work, we provide a simple and pedagogical framework by which to obtain many-body time crystals using parametrically coupled resonators. In our analysis, we use classical period-doubling bifurcation theory and present a clear distinction between single-mode time-translation symmetry breaking and a situation where an extensive number of degrees of freedom undergo the transition. We experimentally demonstrate this paradigm using coupled mechanical oscillators, thus providing a clear route for time crystal realizations in real materials.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEUGEL, Toni L., Matthias OSCITY, Alexander EICHLER, Oded ZILBERBERG, Ramasubramanian CHITRA, 2019. Classical Many-Body Time Crystals. In: Physical Review Letters. American Physical Society (APS). 2019, 123(12), 124301. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.123.124301BibTex
@article{Heugel2019-09-20Class-54947, year={2019}, doi={10.1103/PhysRevLett.123.124301}, title={Classical Many-Body Time Crystals}, number={12}, volume={123}, issn={0031-9007}, journal={Physical Review Letters}, author={Heugel, Toni L. and Oscity, Matthias and Eichler, Alexander and Zilberberg, Oded and Chitra, Ramasubramanian}, note={Article Number: 124301} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54947"> <dc:contributor>Eichler, Alexander</dc:contributor> <dc:creator>Zilberberg, Oded</dc:creator> <dc:creator>Eichler, Alexander</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T13:24:34Z</dc:date> <dc:creator>Chitra, Ramasubramanian</dc:creator> <dc:creator>Heugel, Toni L.</dc:creator> <dcterms:issued>2019-09-20</dcterms:issued> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Heugel, Toni L.</dc:contributor> <dc:contributor>Oscity, Matthias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54947"/> <dc:contributor>Chitra, Ramasubramanian</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:title>Classical Many-Body Time Crystals</dcterms:title> <dcterms:abstract xml:lang="eng">Discrete time crystals are a many-body state of matter where the extensive system’s dynamics are slower than the forces acting on it. Nowadays, there is a growing debate regarding the specific properties required to demonstrate such a many-body state, alongside several experimental realizations. In this work, we provide a simple and pedagogical framework by which to obtain many-body time crystals using parametrically coupled resonators. In our analysis, we use classical period-doubling bifurcation theory and present a clear distinction between single-mode time-translation symmetry breaking and a situation where an extensive number of degrees of freedom undergo the transition. We experimentally demonstrate this paradigm using coupled mechanical oscillators, thus providing a clear route for time crystal realizations in real materials.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T13:24:34Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Oscity, Matthias</dc:creator> </rdf:Description> </rdf:RDF>