Publikation:

Farthest-point optimized point sets with maximized minimum distance

Lade...
Vorschaubild

Dateien

Deussen etal.pdf
Deussen etal.pdfGröße: 5.18 MBDownloads: 2441

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Nicht-periodische Parkettierungen für die Computergraphik
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11. New York, New York, USA: ACM Press, 2011, pp. 135-142. ISBN 978-1-4503-0896-0. Available under: doi: 10.1145/2018323.2018345

Zusammenfassung

Efficient sampling often relies on irregular point sets that uniformly cover the sample space. We present a flexible and simple optimization strategy for such point sets. It is based on the idea of increasing the mutual distances by successively moving each point to the “farthest point,” i.e., the location that has the maximum distance from the rest of the point set. We present two iterative algorithms based on this strategy. The first is our main algorithm which distributes points in the plane. Our experimental results show that the resulting distributions have almost optimal blue noise properties and are highly suitable for image plane sampling. The second is a variant oft he main algorithm that partitions any point set into equally sized subsets, each with large mutual distances; the resulting partitionings yield improved results in more general integration problems such as those occurring in physically based rendering.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11, 5. Aug. 2011 - 7. Aug. 2011, Vancouver, British Columbia, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLÖMER, Thomas, Daniel HECK, Oliver DEUSSEN, 2011. Farthest-point optimized point sets with maximized minimum distance. ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11. Vancouver, British Columbia, Canada, 5. Aug. 2011 - 7. Aug. 2011. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11. New York, New York, USA: ACM Press, 2011, pp. 135-142. ISBN 978-1-4503-0896-0. Available under: doi: 10.1145/2018323.2018345
BibTex
@inproceedings{Schlomer2011Farth-17724,
  year={2011},
  doi={10.1145/2018323.2018345},
  title={Farthest-point optimized point sets with maximized minimum distance},
  isbn={978-1-4503-0896-0},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11},
  pages={135--142},
  author={Schlömer, Thomas and Heck, Daniel and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17724">
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Schlömer, Thomas</dc:contributor>
    <dc:creator>Heck, Daniel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-02T09:10:21Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Efficient sampling often relies on irregular point sets that uniformly cover the sample space. We present a flexible and simple optimization strategy for such point sets. It is based on the idea of increasing the mutual distances by successively moving each point to the “farthest point,” i.e., the location that has the maximum distance from the rest of the point set. We present two iterative algorithms based on this strategy. The first is our main algorithm which distributes points in the plane. Our experimental results show that the resulting distributions have almost optimal blue noise properties and are highly suitable for image plane sampling. The second is a variant oft he main algorithm that partitions any point set into equally sized subsets, each with large mutual distances; the resulting partitionings yield improved results in more general integration problems such as those occurring in physically based rendering.</dcterms:abstract>
    <dc:contributor>Heck, Daniel</dc:contributor>
    <dcterms:issued>2011</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17724"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17724/1/Deussen%20etal.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schlömer, Thomas</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics : HPG '11 / Stephen N. Spencer (ed.). - New York : ACM, 2011. - pp. 135-142. - ISBN 978-1-4503-0896-0</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17724/1/Deussen%20etal.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Farthest-point optimized point sets with maximized minimum distance</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-02T09:10:21Z</dc:date>
    <dc:contributor>Deussen, Oliver</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen