Publikation: EduClust : A Visualization Application for Teaching Clustering Algorithms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present EduClust, a visualization application for teaching clustering algorithms. EduClust is an online application that combines visualizations, interactions, and animations to facilitate the understanding and teaching of clustering steps, parameters, and procedures. Traditional classroom settings aim for cognitive processes like remembering and understanding. We designed EduClust for expanded educational objectives like applying and evaluating. Educators can use the tool in class to show the effect of different clustering parameters on various datasets while animating through each algorithm's steps, but also use the tool to prepare traditional teaching material quickly by exporting animations and images. Students, on the other hand, benefit from the ability to compare and contrast the influence of clustering parameters on different datasets, while seeing technical details such as pseudocode and step-by-step explanations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FUCHS, Johannes, Petra ISENBERG, Anastasia BEZERIANOS, Matthias MILLER, Daniel A. KEIM, 2019. EduClust : A Visualization Application for Teaching Clustering Algorithms. Eurographics 2019. Genova, Italy, 6. Mai 2019 - 10. Mai 2019. In: TARINI, Marco, ed., Eric GALIN, ed.. Eurographics 2019 : Education Papers. Genf: The Eurographics Association, 2019. eISSN 1017-4656. Available under: doi: 10.2312/eged.20191023BibTex
@inproceedings{Fuchs2019EduCl-46436, year={2019}, doi={10.2312/eged.20191023}, title={EduClust : A Visualization Application for Teaching Clustering Algorithms}, publisher={The Eurographics Association}, address={Genf}, booktitle={Eurographics 2019 : Education Papers}, editor={Tarini, Marco and Galin, Eric}, author={Fuchs, Johannes and Isenberg, Petra and Bezerianos, Anastasia and Miller, Matthias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46436"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46436/1/Fuchs_2-1ovs37tv6vmi82.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46436/1/Fuchs_2-1ovs37tv6vmi82.pdf"/> <dcterms:abstract xml:lang="eng">We present EduClust, a visualization application for teaching clustering algorithms. EduClust is an online application that combines visualizations, interactions, and animations to facilitate the understanding and teaching of clustering steps, parameters, and procedures. Traditional classroom settings aim for cognitive processes like remembering and understanding. We designed EduClust for expanded educational objectives like applying and evaluating. Educators can use the tool in class to show the effect of different clustering parameters on various datasets while animating through each algorithm's steps, but also use the tool to prepare traditional teaching material quickly by exporting animations and images. Students, on the other hand, benefit from the ability to compare and contrast the influence of clustering parameters on different datasets, while seeing technical details such as pseudocode and step-by-step explanations.</dcterms:abstract> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Fuchs, Johannes</dc:creator> <dc:creator>Bezerianos, Anastasia</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-17T13:21:17Z</dc:date> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Isenberg, Petra</dc:contributor> <dc:creator>Miller, Matthias</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-17T13:21:17Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46436"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2019</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>EduClust : A Visualization Application for Teaching Clustering Algorithms</dcterms:title> <dc:contributor>Bezerianos, Anastasia</dc:contributor> <dc:creator>Isenberg, Petra</dc:creator> <dc:contributor>Miller, Matthias</dc:contributor> </rdf:Description> </rdf:RDF>