Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Ruas, Terry
Mitrović, Jelena
Aizawa, Akiko
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
SMITS, Malte, ed.. Information for a better world : shaping the global future : 17th international conference, iConference 2022, virtual event, February 28 - March 4, 2022 : Part 1. Cham: Springer Nature, 2022, pp. 225-235. Lecture Notes in Computer Science. 13192. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-96956-1. Available under: doi: 10.1007/978-3-030-96957-8_20
Zusammenfassung

Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro F1 of 0.776, a performance boost of 3% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve exist- ing baseline models in identifying slanted reporting.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
020 Bibliotheks- und Informationswissenschaft
Schlagwörter
Media bias, Text analysis, Multi-task learning, News analysis
Konferenz
iConference 2022 : Information for a Better World: shaping the global future, 28. Feb. 2022 - 4. März 2022, Virtual Event
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SPINDE, Timo, Jan-David KRIEGER, Terry RUAS, Jelena MITROVIĆ, Franz GÖTZ-HAHN, Akiko AIZAWA, Bela GIPP, 2022. Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles. iConference 2022 : Information for a Better World: shaping the global future. Virtual Event, 28. Feb. 2022 - 4. März 2022. In: SMITS, Malte, ed.. Information for a better world : shaping the global future : 17th international conference, iConference 2022, virtual event, February 28 - March 4, 2022 : Part 1. Cham: Springer Nature, 2022, pp. 225-235. Lecture Notes in Computer Science. 13192. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-96956-1. Available under: doi: 10.1007/978-3-030-96957-8_20
BibTex
@inproceedings{Spinde2022Explo-57324,
  year={2022},
  doi={10.1007/978-3-030-96957-8_20},
  title={Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles},
  number={13192},
  isbn={978-3-030-96956-1},
  issn={0302-9743},
  publisher={Springer Nature},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Information for a better world : shaping the global future : 17th international conference, iConference 2022, virtual event, February 28 - March 4, 2022 : Part 1},
  pages={225--235},
  editor={Smits, Malte},
  author={Spinde, Timo and Krieger, Jan-David and Ruas, Terry and Mitrović, Jelena and Götz-Hahn, Franz and Aizawa, Akiko and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57324">
    <dc:contributor>Ruas, Terry</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Spinde, Timo</dc:creator>
    <dc:creator>Götz-Hahn, Franz</dc:creator>
    <dc:contributor>Götz-Hahn, Franz</dc:contributor>
    <dc:creator>Aizawa, Akiko</dc:creator>
    <dcterms:title>Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles</dcterms:title>
    <dc:contributor>Mitrović, Jelena</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Krieger, Jan-David</dc:contributor>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57324"/>
    <dcterms:abstract xml:lang="eng">Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro F1 of 0.776, a performance boost of 3% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve exist- ing baseline models in identifying slanted reporting.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:creator>Krieger, Jan-David</dc:creator>
    <dc:creator>Ruas, Terry</dc:creator>
    <dc:creator>Mitrović, Jelena</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-20T09:31:57Z</dc:date>
    <dc:contributor>Aizawa, Akiko</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-20T09:31:57Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen