Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles

No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Authors
Ruas, Terry
Mitrović, Jelena
Aizawa, Akiko
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Information for a better world : shaping the global future : 17th international conference, iConference 2022, virtual event, February 28 - March 4, 2022 : Part 1 / Smits, Malte (ed.). - Cham : Springer Nature, 2022. - (Lecture Notes in Computer Science ; 13192). - pp. 225-235. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-030-96956-1
Abstract
Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro F1 of 0.776, a performance boost of 3% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve exist- ing baseline models in identifying slanted reporting.
Summary in another language
Subject (DDC)
020 Library and Information Science
Keywords
Media bias, Text analysis, Multi-task learning, News analysis
Conference
iConference 2022 : Information for a Better World: shaping the global future, Feb 28, 2022 - Mar 4, 2022, Virtual Event
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SPINDE, Timo, Jan-David KRIEGER, Terry RUAS, Jelena MITROVIĆ, Franz GÖTZ-HAHN, Akiko AIZAWA, Bela GIPP, 2022. Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles. iConference 2022 : Information for a Better World: shaping the global future. Virtual Event, Feb 28, 2022 - Mar 4, 2022. In: SMITS, Malte, ed.. Information for a better world : shaping the global future : 17th international conference, iConference 2022, virtual event, February 28 - March 4, 2022 : Part 1. Cham:Springer Nature, pp. 225-235. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-96956-1. Available under: doi: 10.1007/978-3-030-96957-8_20
BibTex
@inproceedings{Spinde2022Explo-57324,
  year={2022},
  doi={10.1007/978-3-030-96957-8_20},
  title={Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles},
  number={13192},
  isbn={978-3-030-96956-1},
  issn={0302-9743},
  publisher={Springer Nature},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Information for a better world : shaping the global future : 17th international conference, iConference 2022, virtual event, February 28 - March 4, 2022 : Part 1},
  pages={225--235},
  editor={Smits, Malte},
  author={Spinde, Timo and Krieger, Jan-David and Ruas, Terry and Mitrović, Jelena and Götz-Hahn, Franz and Aizawa, Akiko and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57324">
    <dc:contributor>Ruas, Terry</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Spinde, Timo</dc:creator>
    <dc:creator>Götz-Hahn, Franz</dc:creator>
    <dc:contributor>Götz-Hahn, Franz</dc:contributor>
    <dc:creator>Aizawa, Akiko</dc:creator>
    <dcterms:title>Exploiting Transformer-Based Multitask Learning for the Detection of Media Bias in News Articles</dcterms:title>
    <dc:contributor>Mitrović, Jelena</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Krieger, Jan-David</dc:contributor>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57324"/>
    <dcterms:abstract xml:lang="eng">Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro F1 of 0.776, a performance boost of 3% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve exist- ing baseline models in identifying slanted reporting.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:creator>Krieger, Jan-David</dc:creator>
    <dc:creator>Ruas, Terry</dc:creator>
    <dc:creator>Mitrović, Jelena</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-20T09:31:57Z</dc:date>
    <dc:contributor>Aizawa, Akiko</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-20T09:31:57Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes