Publikation:

Differentiable reservoir computing

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Machine Learning Research (JMLR). Microtome Publishing. 2019, 20, 179. ISSN 1532-4435. eISSN 1533-7928

Zusammenfassung

Numerous results in learning and approximation theory have evidenced the importance of differentiability at the time of countering the curse of dimensionality. In the context of reservoir computing, much effort has been devoted in the last two decades to characterize the situations in which systems of this type exhibit the so-called echo state (ESP) and fading memory (FMP) properties. These important features amount, in mathematical terms, to the existence and continuity of global reservoir system solutions. That research is complemented in this paper with the characterization of the differentiability of reservoir filters for very general classes of discrete-time deterministic inputs. This constitutes a novel strong contribution to the long line of research on the ESP and the FMP and, in particular, links to existing research on the input-dependence of the ESP. Differentiability has been shown in the literature to be a key feature in the learning of attractors of chaotic dynamical systems. A Volterra-type series representation for reservoir filters with semi-infinite discrete-time inputs is constructed in the analytic case using Taylor's theorem and corresponding approximation bounds are provided. Finally, it is shown as a corollary of these results that any fading memory filter can be uniformly approximated by a finite Volterra series with finite memory.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

reservoir computing, fading memory property, finite memory, echo state property, differentiable reservoir filter, Volterra series representation, state-space systems, system identification, machine learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, 2019. Differentiable reservoir computing. In: Journal of Machine Learning Research (JMLR). Microtome Publishing. 2019, 20, 179. ISSN 1532-4435. eISSN 1533-7928
BibTex
@article{Grigoryeva2019Diffe-50257,
  year={2019},
  title={Differentiable reservoir computing},
  url={http://jmlr.org/papers/volume20/19-150/19-150.pdf},
  volume={20},
  issn={1532-4435},
  journal={Journal of Machine Learning Research (JMLR)},
  author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo},
  note={Article Number: 179}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50257">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-15T12:59:12Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50257"/>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dcterms:abstract xml:lang="eng">Numerous results in learning and approximation theory have evidenced the importance of differentiability at the time of countering the curse of dimensionality. In the context of reservoir computing, much effort has been devoted in the last two decades to characterize the situations in which systems of this type exhibit the so-called echo state (ESP) and fading memory (FMP) properties. These important features amount, in mathematical terms, to the existence and continuity of global reservoir system solutions. That research is complemented in this paper with the characterization of the differentiability of reservoir filters for very general classes of discrete-time deterministic inputs. This constitutes a novel strong contribution to the long line of research on the ESP and the FMP and, in particular, links to existing research on the input-dependence of the ESP. Differentiability has been shown in the literature to be a key feature in the learning of attractors of chaotic dynamical systems. A Volterra-type series representation for reservoir filters with semi-infinite discrete-time inputs is constructed in the analytic case using Taylor's theorem and corresponding approximation bounds are provided. Finally, it is shown as a corollary of these results that any fading memory filter can be uniformly approximated by a finite Volterra series with finite memory.</dcterms:abstract>
    <dcterms:title>Differentiable reservoir computing</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-15T12:59:12Z</dcterms:available>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2020-07-15

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen