Publikation: Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Drugs that modulate mitochondrial function can cause severe adverse effects. Unfortunately, mitochondrial toxicity is often not detected in animal models, which stresses the need for predictive in silico approaches. In this study we present a model for predicting mitochondrial toxicity focusing on human mitochondrial respiratory complex I (CI) inhibition by combining structure-based methods with machine learning. The structure-based studies are based on CI inhibition by the pesticide rotenone, which is known to induce parkinsonian motor deficits, and its analogue deguelin. After predicting a common binding mode for these two compounds using induced-fit docking, two structure-based pharmacophore models were created and used for virtual screening of DrugBank and the Chemspace library. The hit list was further refined by three different machine learning models, and the top ranked compounds were selected for experimental testing. Using a tiered approach, the compounds were tested in three distinct in vitro assays, which led to the identification of three specific CI inhibitors. These results demonstrate that risk assessment and hazard analysis can benefit from combining structure-based methods and machine learning.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TROGER, Florentina, Johannes DELP, Melina FUNKE, Wanda VAN DER STEL, Claire COLAS, Marcel LEIST, Bob VAN DE WATER, Gerhard F. ECKER, 2020. Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway. In: Computational Toxicology. Elsevier. 2020, 14, 100123. eISSN 2468-1113. Available under: doi: 10.1016/j.comtox.2020.100123BibTex
@article{Troger2020Ident-51265, year={2020}, doi={10.1016/j.comtox.2020.100123}, title={Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway}, volume={14}, journal={Computational Toxicology}, author={Troger, Florentina and Delp, Johannes and Funke, Melina and van der Stel, Wanda and Colas, Claire and Leist, Marcel and van de Water, Bob and Ecker, Gerhard F.}, note={Article Number: 100123} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51265"> <dc:contributor>Ecker, Gerhard F.</dc:contributor> <dc:creator>Troger, Florentina</dc:creator> <dcterms:title>Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway</dcterms:title> <dc:creator>Ecker, Gerhard F.</dc:creator> <dc:contributor>van de Water, Bob</dc:contributor> <dc:creator>Funke, Melina</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51265/1/Troger_2-1p28zaauda4467.pdf"/> <dc:contributor>van der Stel, Wanda</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T13:52:23Z</dcterms:available> <dcterms:issued>2020</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Drugs that modulate mitochondrial function can cause severe adverse effects. Unfortunately, mitochondrial toxicity is often not detected in animal models, which stresses the need for predictive in silico approaches. In this study we present a model for predicting mitochondrial toxicity focusing on human mitochondrial respiratory complex I (CI) inhibition by combining structure-based methods with machine learning. The structure-based studies are based on CI inhibition by the pesticide rotenone, which is known to induce parkinsonian motor deficits, and its analogue deguelin. After predicting a common binding mode for these two compounds using induced-fit docking, two structure-based pharmacophore models were created and used for virtual screening of DrugBank and the Chemspace library. The hit list was further refined by three different machine learning models, and the top ranked compounds were selected for experimental testing. Using a tiered approach, the compounds were tested in three distinct in vitro assays, which led to the identification of three specific CI inhibitors. These results demonstrate that risk assessment and hazard analysis can benefit from combining structure-based methods and machine learning.</dcterms:abstract> <dc:creator>Leist, Marcel</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Funke, Melina</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51265/1/Troger_2-1p28zaauda4467.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T13:52:23Z</dc:date> <dc:creator>van de Water, Bob</dc:creator> <dc:creator>Colas, Claire</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Colas, Claire</dc:contributor> <dc:creator>van der Stel, Wanda</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51265"/> <dc:contributor>Troger, Florentina</dc:contributor> <dc:contributor>Leist, Marcel</dc:contributor> <dc:creator>Delp, Johannes</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Delp, Johannes</dc:contributor> </rdf:Description> </rdf:RDF>