Publikation:

Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway

Lade...
Vorschaubild

Dateien

Troger_2-1p28zaauda4467.pdf
Troger_2-1p28zaauda4467.pdfGröße: 2.95 MBDownloads: 258

Datum

2020

Autor:innen

Troger, Florentina
van der Stel, Wanda
Colas, Claire
van de Water, Bob
Ecker, Gerhard F.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computational Toxicology. Elsevier. 2020, 14, 100123. eISSN 2468-1113. Available under: doi: 10.1016/j.comtox.2020.100123

Zusammenfassung

Drugs that modulate mitochondrial function can cause severe adverse effects. Unfortunately, mitochondrial toxicity is often not detected in animal models, which stresses the need for predictive in silico approaches. In this study we present a model for predicting mitochondrial toxicity focusing on human mitochondrial respiratory complex I (CI) inhibition by combining structure-based methods with machine learning. The structure-based studies are based on CI inhibition by the pesticide rotenone, which is known to induce parkinsonian motor deficits, and its analogue deguelin. After predicting a common binding mode for these two compounds using induced-fit docking, two structure-based pharmacophore models were created and used for virtual screening of DrugBank and the Chemspace library. The hit list was further refined by three different machine learning models, and the top ranked compounds were selected for experimental testing. Using a tiered approach, the compounds were tested in three distinct in vitro assays, which led to the identification of three specific CI inhibitors. These results demonstrate that risk assessment and hazard analysis can benefit from combining structure-based methods and machine learning.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Mitochondrial toxicity, Mitochondrial respiratory complex I, Rotenone, Deguelin, Neurotoxicity, Machine learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TROGER, Florentina, Johannes DELP, Melina FUNKE, Wanda VAN DER STEL, Claire COLAS, Marcel LEIST, Bob VAN DE WATER, Gerhard F. ECKER, 2020. Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway. In: Computational Toxicology. Elsevier. 2020, 14, 100123. eISSN 2468-1113. Available under: doi: 10.1016/j.comtox.2020.100123
BibTex
@article{Troger2020Ident-51265,
  year={2020},
  doi={10.1016/j.comtox.2020.100123},
  title={Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway},
  volume={14},
  journal={Computational Toxicology},
  author={Troger, Florentina and Delp, Johannes and Funke, Melina and van der Stel, Wanda and Colas, Claire and Leist, Marcel and van de Water, Bob and Ecker, Gerhard F.},
  note={Article Number: 100123}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51265">
    <dc:contributor>Ecker, Gerhard F.</dc:contributor>
    <dc:creator>Troger, Florentina</dc:creator>
    <dcterms:title>Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway</dcterms:title>
    <dc:creator>Ecker, Gerhard F.</dc:creator>
    <dc:contributor>van de Water, Bob</dc:contributor>
    <dc:creator>Funke, Melina</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51265/1/Troger_2-1p28zaauda4467.pdf"/>
    <dc:contributor>van der Stel, Wanda</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T13:52:23Z</dcterms:available>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Drugs that modulate mitochondrial function can cause severe adverse effects. Unfortunately, mitochondrial toxicity is often not detected in animal models, which stresses the need for predictive in silico approaches. In this study we present a model for predicting mitochondrial toxicity focusing on human mitochondrial respiratory complex I (CI) inhibition by combining structure-based methods with machine learning. The structure-based studies are based on CI inhibition by the pesticide rotenone, which is known to induce parkinsonian motor deficits, and its analogue deguelin. After predicting a common binding mode for these two compounds using induced-fit docking, two structure-based pharmacophore models were created and used for virtual screening of DrugBank and the Chemspace library. The hit list was further refined by three different machine learning models, and the top ranked compounds were selected for experimental testing. Using a tiered approach, the compounds were tested in three distinct in vitro assays, which led to the identification of three specific CI inhibitors. These results demonstrate that risk assessment and hazard analysis can benefit from combining structure-based methods and machine learning.</dcterms:abstract>
    <dc:creator>Leist, Marcel</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Funke, Melina</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51265/1/Troger_2-1p28zaauda4467.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T13:52:23Z</dc:date>
    <dc:creator>van de Water, Bob</dc:creator>
    <dc:creator>Colas, Claire</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Colas, Claire</dc:contributor>
    <dc:creator>van der Stel, Wanda</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51265"/>
    <dc:contributor>Troger, Florentina</dc:contributor>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <dc:creator>Delp, Johannes</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Delp, Johannes</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen