Publikation: How liquid–liquid phase separation induces active spreading
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The interplay between phase separation and wetting of multicomponent mixtures is ubiquitous in nature and technology and recently gained significant attention across scientific disciplines, due to the discovery of biomolecular condensates. It is well understood that sessile droplets, undergoing phase separation in a static wetting configuration, exhibit microdroplet nucleation at their contact lines, forming an oil ring during later stages. However, very little is known about the dynamic counterpart, when phase separation occurs in a nonequilibrium wetting configuration, i.e., spreading droplets. Here we show that liquid–liquid phase separation strongly couples to the spreading motion of three-phase contact lines. Thus, the classical Cox–Voinov law is not applicable anymore, because phase separation adds an active spreading force beyond the capillary driving. Intriguingly, we observe that spreading starts well before any visible nucleation of microdroplets in the main droplet. Using high-speed ellipsometry, we further demonstrate that the evaporation-induced enrichment, together with surface forces, causes an even earlier nucleation in the wetting precursor film around the droplet, initiating the observed wetting transition. We expect our findings to improve the fundamental understanding of phase separation processes that involve dynamical contact lines and/or surface forces, with implications in a wide range of applications, from oil recovery or inkjet printing to material synthesis and biomolecular condensates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHAO, Youchuang, Olinka RAMÍREZ-SOTO, Christian BAHR, Stefan KARPITSCHKA, 2022. How liquid–liquid phase separation induces active spreading. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS). Proceedings of the National Academy of Sciences. 2022, 119(30), e2203510119. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.2203510119BibTex
@article{Chao2022liqui-67403, year={2022}, doi={10.1073/pnas.2203510119}, title={How liquid–liquid phase separation induces active spreading}, number={30}, volume={119}, issn={0027-8424}, journal={Proceedings of the National Academy of Sciences of the United States of America (PNAS)}, author={Chao, Youchuang and Ramírez-Soto, Olinka and Bahr, Christian and Karpitschka, Stefan}, note={Article Number: e2203510119} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67403"> <dc:creator>Bahr, Christian</dc:creator> <dc:creator>Ramírez-Soto, Olinka</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67403/4/Chao_2-1p2ca1vo1rehh4.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67403/4/Chao_2-1p2ca1vo1rehh4.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Chao, Youchuang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-21T08:28:16Z</dc:date> <dc:creator>Chao, Youchuang</dc:creator> <dc:creator>Karpitschka, Stefan</dc:creator> <dc:contributor>Ramírez-Soto, Olinka</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67403"/> <dcterms:title>How liquid–liquid phase separation induces active spreading</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2022</dcterms:issued> <dc:contributor>Bahr, Christian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-21T08:28:16Z</dcterms:available> <dcterms:abstract>The interplay between phase separation and wetting of multicomponent mixtures is ubiquitous in nature and technology and recently gained significant attention across scientific disciplines, due to the discovery of biomolecular condensates. It is well understood that sessile droplets, undergoing phase separation in a static wetting configuration, exhibit microdroplet nucleation at their contact lines, forming an oil ring during later stages. However, very little is known about the dynamic counterpart, when phase separation occurs in a nonequilibrium wetting configuration, i.e., spreading droplets. Here we show that liquid–liquid phase separation strongly couples to the spreading motion of three-phase contact lines. Thus, the classical Cox–Voinov law is not applicable anymore, because phase separation adds an active spreading force beyond the capillary driving. Intriguingly, we observe that spreading starts well before any visible nucleation of microdroplets in the main droplet. Using high-speed ellipsometry, we further demonstrate that the evaporation-induced enrichment, together with surface forces, causes an even earlier nucleation in the wetting precursor film around the droplet, initiating the observed wetting transition. We expect our findings to improve the fundamental understanding of phase separation processes that involve dynamical contact lines and/or surface forces, with implications in a wide range of applications, from oil recovery or inkjet printing to material synthesis and biomolecular condensates.</dcterms:abstract> <dc:contributor>Karpitschka, Stefan</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>