Publikation:

How liquid–liquid phase separation induces active spreading

Lade...
Vorschaubild

Dateien

Chao_2-1p2ca1vo1rehh4.pdf
Chao_2-1p2ca1vo1rehh4.pdfGröße: 1.24 MBDownloads: 21

Datum

2022

Autor:innen

Chao, Youchuang
Ramírez-Soto, Olinka
Bahr, Christian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the National Academy of Sciences of the United States of America (PNAS). Proceedings of the National Academy of Sciences. 2022, 119(30), e2203510119. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.2203510119

Zusammenfassung

The interplay between phase separation and wetting of multicomponent mixtures is ubiquitous in nature and technology and recently gained significant attention across scientific disciplines, due to the discovery of biomolecular condensates. It is well understood that sessile droplets, undergoing phase separation in a static wetting configuration, exhibit microdroplet nucleation at their contact lines, forming an oil ring during later stages. However, very little is known about the dynamic counterpart, when phase separation occurs in a nonequilibrium wetting configuration, i.e., spreading droplets. Here we show that liquid–liquid phase separation strongly couples to the spreading motion of three-phase contact lines. Thus, the classical Cox–Voinov law is not applicable anymore, because phase separation adds an active spreading force beyond the capillary driving. Intriguingly, we observe that spreading starts well before any visible nucleation of microdroplets in the main droplet. Using high-speed ellipsometry, we further demonstrate that the evaporation-induced enrichment, together with surface forces, causes an even earlier nucleation in the wetting precursor film around the droplet, initiating the observed wetting transition. We expect our findings to improve the fundamental understanding of phase separation processes that involve dynamical contact lines and/or surface forces, with implications in a wide range of applications, from oil recovery or inkjet printing to material synthesis and biomolecular condensates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHAO, Youchuang, Olinka RAMÍREZ-SOTO, Christian BAHR, Stefan KARPITSCHKA, 2022. How liquid–liquid phase separation induces active spreading. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS). Proceedings of the National Academy of Sciences. 2022, 119(30), e2203510119. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.2203510119
BibTex
@article{Chao2022liqui-67403,
  year={2022},
  doi={10.1073/pnas.2203510119},
  title={How liquid–liquid phase separation induces active spreading},
  number={30},
  volume={119},
  issn={0027-8424},
  journal={Proceedings of the National Academy of Sciences of the United States of America (PNAS)},
  author={Chao, Youchuang and Ramírez-Soto, Olinka and Bahr, Christian and Karpitschka, Stefan},
  note={Article Number: e2203510119}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67403">
    <dc:creator>Bahr, Christian</dc:creator>
    <dc:creator>Ramírez-Soto, Olinka</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67403/4/Chao_2-1p2ca1vo1rehh4.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67403/4/Chao_2-1p2ca1vo1rehh4.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Chao, Youchuang</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-21T08:28:16Z</dc:date>
    <dc:creator>Chao, Youchuang</dc:creator>
    <dc:creator>Karpitschka, Stefan</dc:creator>
    <dc:contributor>Ramírez-Soto, Olinka</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67403"/>
    <dcterms:title>How liquid–liquid phase separation induces active spreading</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Bahr, Christian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-21T08:28:16Z</dcterms:available>
    <dcterms:abstract>The interplay between phase separation and wetting of multicomponent mixtures is ubiquitous in nature and technology and recently gained significant attention across scientific disciplines, due to the discovery of biomolecular condensates. It is well understood that sessile droplets, undergoing phase separation in a static wetting configuration, exhibit microdroplet nucleation at their contact lines, forming an oil ring during later stages. However, very little is known about the dynamic counterpart, when phase separation occurs in a nonequilibrium wetting configuration, i.e., spreading droplets. Here we show that liquid–liquid phase separation strongly couples to the spreading motion of three-phase contact lines. Thus, the classical Cox–Voinov law is not applicable anymore, because phase separation adds an active spreading force beyond the capillary driving. Intriguingly, we observe that spreading starts well before any visible nucleation of microdroplets in the main droplet. Using high-speed ellipsometry, we further demonstrate that the evaporation-induced enrichment, together with surface forces, causes an even earlier nucleation in the wetting precursor film around the droplet, initiating the observed wetting transition. We expect our findings to improve the fundamental understanding of phase separation processes that involve dynamical contact lines and/or surface forces, with implications in a wide range of applications, from oil recovery or inkjet printing to material synthesis and biomolecular condensates.</dcterms:abstract>
    <dc:contributor>Karpitschka, Stefan</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen