Publikation: Strain-enabled control of the vanadium qudit in silicon carbide
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Vanadium in silicon carbide is a promising spin photon interface candidate with optical transitions in the telecom range and a long lived electron spin, hosted in an advanced semiconductor platform. In this detailed investigation of the defect's 16-dimensional ground state spin manifold at millikelvin temperatures, a wide range of previously unreported transitions are observed which are accurately described using a theoretical model that includes strain. Using a superconducting microcoil we achieve Rabi frequencies exceeding 20MHz and perform the first coherent manipulation of a direct hyperfine transition. These insights further underscore the defect's potential for strain engineering and sensing, as well as for fault-tolerant qudit encoding.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOLLER, Philipp, Thomas ASTNER, Benedikt TISSOT, Guido BURKARD, Michael TRUPKE, 2025. Strain-enabled control of the vanadium qudit in silicon carbide. In: Physical Review Materials. American Physical Society (APS). 2025, 9(4), L043201. eISSN 2475-9953. Verfügbar unter: doi: 10.1103/physrevmaterials.9.l043201BibTex
@article{Koller2025-04-24Strai-73245, title={Strain-enabled control of the vanadium qudit in silicon carbide}, year={2025}, doi={10.1103/physrevmaterials.9.l043201}, number={4}, volume={9}, journal={Physical Review Materials}, author={Koller, Philipp and Astner, Thomas and Tissot, Benedikt and Burkard, Guido and Trupke, Michael}, note={Article Number: L043201} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73245"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-07T10:56:35Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-07T10:56:35Z</dcterms:available> <dc:creator>Trupke, Michael</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> <dcterms:title>Strain-enabled control of the vanadium qudit in silicon carbide</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73245"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Burkard, Guido</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73245/1/Koller_2-1p2cke9ybckxk1.pdf"/> <dc:creator>Koller, Philipp</dc:creator> <dc:contributor>Koller, Philipp</dc:contributor> <dc:contributor>Trupke, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Tissot, Benedikt</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Tissot, Benedikt</dc:creator> <dc:creator>Astner, Thomas</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73245/1/Koller_2-1p2cke9ybckxk1.pdf"/> <dc:language>eng</dc:language> <dcterms:issued>2025-04-24</dcterms:issued> <dcterms:abstract>Vanadium in silicon carbide is a promising spin photon interface candidate with optical transitions in the telecom range and a long lived electron spin, hosted in an advanced semiconductor platform. In this detailed investigation of the defect's 16-dimensional ground state spin manifold at millikelvin temperatures, a wide range of previously unreported transitions are observed which are accurately described using a theoretical model that includes strain. Using a superconducting microcoil we achieve Rabi frequencies exceeding 20MHz and perform the first coherent manipulation of a direct hyperfine transition. These insights further underscore the defect's potential for strain engineering and sensing, as well as for fault-tolerant qudit encoding.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Astner, Thomas</dc:contributor> </rdf:Description> </rdf:RDF>