Publikation: Demushkin's Theorem in Codimension One
Lade...
Dateien
Datum
2002
Autor:innen
Hausen, Jürgen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Demushkin's Theorem says that any two toric structures on an affine variety X are conjugate in the automorphism group of X. We provide the following extension: Let an (n-1)-dimensional torus T act effectively on an n-dimensional affine toric variety X. Then T is conjugate in the automorphism group of X to a subtorus of the big torus of X.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERCHTOLD, Florian, Jürgen HAUSEN, 2002. Demushkin's Theorem in Codimension OneBibTex
@unpublished{Berchtold2002Demus-6142, year={2002}, title={Demushkin's Theorem in Codimension One}, author={Berchtold, Florian and Hausen, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6142"> <dcterms:issued>2002</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Demushkin's Theorem in Codimension One</dcterms:title> <dcterms:abstract xml:lang="eng">Demushkin's Theorem says that any two toric structures on an affine variety X are conjugate in the automorphism group of X. We provide the following extension: Let an (n-1)-dimensional torus T act effectively on an n-dimensional affine toric variety X. Then T is conjugate in the automorphism group of X to a subtorus of the big torus of X.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berchtold, Florian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:47Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6142"/> <dc:language>eng</dc:language> <dc:creator>Berchtold, Florian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:47Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6142/1/preprint_176.pdf"/> <dc:creator>Hausen, Jürgen</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6142/1/preprint_176.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Hausen, Jürgen</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>