Publikation:

Graph Based Relational Features for Collective Classification

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CAO, Tru, ed. and others. Advances in Knowledge Discovery and Data Mining, 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015; Proceedings, Part II. Cham: Springer, 2015, pp. 447-458. Lecture Notes in Artificial Intelligence. 9078. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-18031-1. Available under: doi: 10.1007/978-3-319-18032-8_35

Zusammenfassung

Statistical Relational Learning (SRL) methods have shown that classification accuracy can be improved by integrating relations between samples. Techniques such as iterative classification or relaxation labeling achieve this by propagating information between related samples during the inference process. When only a few samples are labeled and connections between samples are sparse, collective inference methods have shown large improvements over standard feature-based ML methods. However, in contrast to feature based ML, collective inference methods require complex inference procedures and often depend on the strong assumption of label consistency among related samples. In this paper, we introduce new relational features for standard ML methods by extracting information from direct and indirect relations. We show empirically on three standard benchmark datasets that our relational features yield results comparable to collective inference methods. Finally we show that our proposal outperforms these methods when additional information is available.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

19th Pacific-Asia Conference, PAKDD 2015, 19. Mai 2015 - 22. Mai 2015, Ho Chi Minh City, Vietnam
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAYER, Immanuel, Uwe NAGEL, Steffen RENDLE, 2015. Graph Based Relational Features for Collective Classification. 19th Pacific-Asia Conference, PAKDD 2015. Ho Chi Minh City, Vietnam, 19. Mai 2015 - 22. Mai 2015. In: CAO, Tru, ed. and others. Advances in Knowledge Discovery and Data Mining, 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015; Proceedings, Part II. Cham: Springer, 2015, pp. 447-458. Lecture Notes in Artificial Intelligence. 9078. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-18031-1. Available under: doi: 10.1007/978-3-319-18032-8_35
BibTex
@inproceedings{Bayer2015-05-09Graph-39725,
  year={2015},
  doi={10.1007/978-3-319-18032-8_35},
  title={Graph Based Relational Features for Collective Classification},
  number={9078},
  isbn={978-3-319-18031-1},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Artificial Intelligence},
  booktitle={Advances in Knowledge Discovery and Data Mining, 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015; Proceedings, Part II},
  pages={447--458},
  editor={Cao, Tru},
  author={Bayer, Immanuel and Nagel, Uwe and Rendle, Steffen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39725">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rendle, Steffen</dc:creator>
    <dc:contributor>Rendle, Steffen</dc:contributor>
    <dc:contributor>Nagel, Uwe</dc:contributor>
    <dc:creator>Bayer, Immanuel</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2015-05-09</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T08:45:12Z</dcterms:available>
    <dcterms:title>Graph Based Relational Features for Collective Classification</dcterms:title>
    <dc:contributor>Bayer, Immanuel</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Nagel, Uwe</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39725"/>
    <dcterms:abstract xml:lang="eng">Statistical Relational Learning (SRL) methods have shown that classification accuracy can be improved by integrating relations between samples. Techniques such as iterative classification or relaxation labeling achieve this by propagating information between related samples during the inference process. When only a few samples are labeled and connections between samples are sparse, collective inference methods have shown large improvements over standard feature-based ML methods. However, in contrast to feature based ML, collective inference methods require complex inference procedures and often depend on the strong assumption of label consistency among related samples. In this paper, we introduce new relational features for standard ML methods by extracting information from direct and indirect relations. We show empirically on three standard benchmark datasets that our relational features yield results comparable to collective inference methods. Finally we show that our proposal outperforms these methods when additional information is available.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T08:45:12Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen