Publikation: On the toric ideal of a matroid
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Lasoń, Michał
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advances in Mathematics. Elsevier. 2014, 259, pp. 1-12. ISSN 0001-8708. eISSN 1090-2082. Available under: doi: 10.1016/j.aim.2014.03.004
Zusammenfassung
Describing minimal generating set of a toric ideal is a well-studied and difficult problem. In 1980 White conjectured that the toric ideal associated to a matroid is equal to the ideal generated by quadratic binomials corresponding to symmetric exchanges.
We prove White's conjecture up to saturation, that is that the saturations of both ideals are equal. In the language of algebraic geometry this means that both ideals define the same projective scheme. Additionally we prove the full conjecture for strongly base orderable matroids.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Matroid, Toric ideal, Base exchange, Strongly base orderable matroid
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
LASOŃ, Michał, Mateusz MICHALEK, 2014. On the toric ideal of a matroid. In: Advances in Mathematics. Elsevier. 2014, 259, pp. 1-12. ISSN 0001-8708. eISSN 1090-2082. Available under: doi: 10.1016/j.aim.2014.03.004BibTex
@article{Lason2014toric-52452, year={2014}, doi={10.1016/j.aim.2014.03.004}, title={On the toric ideal of a matroid}, volume={259}, issn={0001-8708}, journal={Advances in Mathematics}, pages={1--12}, author={Lasoń, Michał and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52452"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T09:18:14Z</dc:date> <dc:contributor>Lasoń, Michał</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Describing minimal generating set of a toric ideal is a well-studied and difficult problem. In 1980 White conjectured that the toric ideal associated to a matroid is equal to the ideal generated by quadratic binomials corresponding to symmetric exchanges.<br /><br />We prove White's conjecture up to saturation, that is that the saturations of both ideals are equal. In the language of algebraic geometry this means that both ideals define the same projective scheme. Additionally we prove the full conjecture for strongly base orderable matroids.</dcterms:abstract> <dc:creator>Lasoń, Michał</dc:creator> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T09:18:14Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52452"/> <dcterms:issued>2014</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>On the toric ideal of a matroid</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja