Publikation:

On the toric ideal of a matroid

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Lasoń, Michał

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Mathematics. Elsevier. 2014, 259, pp. 1-12. ISSN 0001-8708. eISSN 1090-2082. Available under: doi: 10.1016/j.aim.2014.03.004

Zusammenfassung

Describing minimal generating set of a toric ideal is a well-studied and difficult problem. In 1980 White conjectured that the toric ideal associated to a matroid is equal to the ideal generated by quadratic binomials corresponding to symmetric exchanges.

We prove White's conjecture up to saturation, that is that the saturations of both ideals are equal. In the language of algebraic geometry this means that both ideals define the same projective scheme. Additionally we prove the full conjecture for strongly base orderable matroids.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Matroid, Toric ideal, Base exchange, Strongly base orderable matroid

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LASOŃ, Michał, Mateusz MICHALEK, 2014. On the toric ideal of a matroid. In: Advances in Mathematics. Elsevier. 2014, 259, pp. 1-12. ISSN 0001-8708. eISSN 1090-2082. Available under: doi: 10.1016/j.aim.2014.03.004
BibTex
@article{Lason2014toric-52452,
  year={2014},
  doi={10.1016/j.aim.2014.03.004},
  title={On the toric ideal of a matroid},
  volume={259},
  issn={0001-8708},
  journal={Advances in Mathematics},
  pages={1--12},
  author={Lasoń, Michał and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52452">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T09:18:14Z</dc:date>
    <dc:contributor>Lasoń, Michał</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Describing minimal generating set of a toric ideal is a well-studied and difficult problem. In 1980 White conjectured that the toric ideal associated to a matroid is equal to the ideal generated by quadratic binomials corresponding to symmetric exchanges.&lt;br /&gt;&lt;br /&gt;We prove White's conjecture up to saturation, that is that the saturations of both ideals are equal. In the language of algebraic geometry this means that both ideals define the same projective scheme. Additionally we prove the full conjecture for strongly base orderable matroids.</dcterms:abstract>
    <dc:creator>Lasoń, Michał</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T09:18:14Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52452"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:title>On the toric ideal of a matroid</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen