Publikation: Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Dynamical model is always an important factor in controller design for robots. Existing models of robotic fish typically incorporate only planar motion, rarely considering spatial motion. This paper formulates a complete three-dimensional (3-D) dynamic model for the robotic fish actuated by pectoral and caudal fins, in which the fluid forces mainly contain quasi-steady lift and drag, gravity and buoyancy, and waterjet strike force. The critical lift and drag of flapping fins are derived with an explicit 3-D angle of attack. Taking a bioinspired central pattern generator as the system actuation, our model can produce multimodal maneuvers, including forward/backward swimming, turning, and ascending/descending, as well as complicated motions, such as rolling and spiraling. Motions simulated in a 3-D environment are experimentally validated with a free-swimming robotic fish. Furthermore, systematic comparisons between simulations and experiments are conducted over a wide range of the control parameter space for beating frequency, amplitude, and offset. The overall results demonstrate the effectiveness and the versatility of the developed 3-D dynamic model in the prediction of the robot trajectory, velocity, and attitude.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Wei, Xia DAI, Liang LI, Banti H. GHENETI, Yang DING, Junzhi YU, Guangming XIE, 2018. Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming. In: IEEE/ASME Transactions on Mechatronics. Institute of Electrical and Electronics Engineers (IEEE) ; American Society of Mechanical Engineers (ASME). 2018, 23(4), pp. 1641-1652. ISSN 1083-4435. eISSN 1941-014X. Available under: doi: 10.1109/TMECH.2018.2848220BibTex
@article{Wang2018-08Three-51045, year={2018}, doi={10.1109/TMECH.2018.2848220}, title={Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming}, number={4}, volume={23}, issn={1083-4435}, journal={IEEE/ASME Transactions on Mechatronics}, pages={1641--1652}, author={Wang, Wei and Dai, Xia and Li, Liang and Gheneti, Banti H. and Ding, Yang and Yu, Junzhi and Xie, Guangming} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51045"> <dc:contributor>Ding, Yang</dc:contributor> <dcterms:abstract xml:lang="eng">Dynamical model is always an important factor in controller design for robots. Existing models of robotic fish typically incorporate only planar motion, rarely considering spatial motion. This paper formulates a complete three-dimensional (3-D) dynamic model for the robotic fish actuated by pectoral and caudal fins, in which the fluid forces mainly contain quasi-steady lift and drag, gravity and buoyancy, and waterjet strike force. The critical lift and drag of flapping fins are derived with an explicit 3-D angle of attack. Taking a bioinspired central pattern generator as the system actuation, our model can produce multimodal maneuvers, including forward/backward swimming, turning, and ascending/descending, as well as complicated motions, such as rolling and spiraling. Motions simulated in a 3-D environment are experimentally validated with a free-swimming robotic fish. Furthermore, systematic comparisons between simulations and experiments are conducted over a wide range of the control parameter space for beating frequency, amplitude, and offset. The overall results demonstrate the effectiveness and the versatility of the developed 3-D dynamic model in the prediction of the robot trajectory, velocity, and attitude.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Li, Liang</dc:contributor> <dc:contributor>Dai, Xia</dc:contributor> <dc:creator>Dai, Xia</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Xie, Guangming</dc:contributor> <dc:creator>Li, Liang</dc:creator> <dc:creator>Xie, Guangming</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T07:59:21Z</dcterms:available> <dc:creator>Ding, Yang</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51045"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Yu, Junzhi</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Gheneti, Banti H.</dc:creator> <dc:contributor>Yu, Junzhi</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T07:59:21Z</dc:date> <dcterms:issued>2018-08</dcterms:issued> <dc:creator>Wang, Wei</dc:creator> <dcterms:title>Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming</dcterms:title> <dc:contributor>Gheneti, Banti H.</dc:contributor> <dc:contributor>Wang, Wei</dc:contributor> </rdf:Description> </rdf:RDF>