Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound

Lade...
Vorschaubild
Dateien
Gubisch_0-322691.pdf
Gubisch_0-322691.pdfGröße: 483.02 KBDownloads: 79
Datum
2011
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We consider the Cauchy problem of magneto-thermo-elasticity with second sound in three space dimensions. After proving the existence of a unique solution, we use Fourier transform and multiplier methods to show polynomial decay rates for suitable initial data. We compare the qualitative and quantitative asymptotic behaviour of magneto-thermo-elasticity with second sound with that of the classical system.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
magneto-thermo-elasticity, parabolic-hyperbolic systems, well-posedness, asymptotic behavior, decay rates
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GUBISCH, Martin, 2011. Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound
BibTex
@techreport{Gubisch2011Wellp-33370,
  year={2011},
  series={Konstanzer Schriften in Mathematik},
  title={Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound},
  number={349},
  author={Gubisch, Martin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33370">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33370/3/Gubisch_0-322691.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33370/3/Gubisch_0-322691.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">We consider the Cauchy problem of magneto-thermo-elasticity with second sound in three space dimensions. After proving the existence of a unique solution, we use Fourier transform and multiplier methods to show polynomial decay rates for suitable initial data. We compare the qualitative and quantitative asymptotic behaviour of magneto-thermo-elasticity with second sound with that of the classical system.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-17T13:27:14Z</dcterms:available>
    <dc:creator>Gubisch, Martin</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Gubisch, Martin</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33370"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-17T13:27:14Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet