Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound
Lade...
Dateien
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We consider the Cauchy problem of magneto-thermo-elasticity with second sound in three space dimensions. After proving the existence of a unique solution, we use Fourier transform and multiplier methods to show polynomial decay rates for suitable initial data. We compare the qualitative and quantitative asymptotic behaviour of magneto-thermo-elasticity with second sound with that of the classical system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
magneto-thermo-elasticity, parabolic-hyperbolic systems, well-posedness, asymptotic behavior, decay rates
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GUBISCH, Martin, 2011. Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second soundBibTex
@techreport{Gubisch2011Wellp-33370, year={2011}, series={Konstanzer Schriften in Mathematik}, title={Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound}, number={349}, author={Gubisch, Martin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33370"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33370/3/Gubisch_0-322691.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33370/3/Gubisch_0-322691.pdf"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We consider the Cauchy problem of magneto-thermo-elasticity with second sound in three space dimensions. After proving the existence of a unique solution, we use Fourier transform and multiplier methods to show polynomial decay rates for suitable initial data. We compare the qualitative and quantitative asymptotic behaviour of magneto-thermo-elasticity with second sound with that of the classical system.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-17T13:27:14Z</dcterms:available> <dc:creator>Gubisch, Martin</dc:creator> <dcterms:issued>2011</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Well-posedness and asymptotic behaviour for linear magneto-thermo-elasticity with second sound</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Gubisch, Martin</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33370"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-17T13:27:14Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja