Publikation:

Perspectives in machine learning for wildlife conservation

Lade...
Vorschaubild

Dateien

Tuia_56536.pdf
Tuia_56536.pdfGröße: 10.49 MBDownloads: 232

Datum

2022

Autor:innen

Tuia, Devis
Kellenberger, Benjamin
Beery, Sara
Zuffi, Silvia
Risse, Benjamin
Mathis, Alexander
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Communications. Nature Publishing Group. 2022, 13, 792. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-27980-y

Zusammenfassung

Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TUIA, Devis, Benjamin KELLENBERGER, Sara BEERY, Blair R. COSTELLOE, Silvia ZUFFI, Benjamin RISSE, Alexander MATHIS, Martin WIKELSKI, Iain D. COUZIN, Margaret C. CROFOOT, 2022. Perspectives in machine learning for wildlife conservation. In: Nature Communications. Nature Publishing Group. 2022, 13, 792. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-27980-y
BibTex
@article{Tuia2022Persp-56536,
  year={2022},
  doi={10.1038/s41467-022-27980-y},
  title={Perspectives in machine learning for wildlife conservation},
  volume={13},
  journal={Nature Communications},
  author={Tuia, Devis and Kellenberger, Benjamin and Beery, Sara and Costelloe, Blair R. and Zuffi, Silvia and Risse, Benjamin and Mathis, Alexander and Wikelski, Martin and Couzin, Iain D. and Crofoot, Margaret C.},
  note={Article Number: 792}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56536">
    <dc:contributor>Costelloe, Blair R.</dc:contributor>
    <dc:contributor>Tuia, Devis</dc:contributor>
    <dc:contributor>Zuffi, Silvia</dc:contributor>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dc:contributor>Wikelski, Martin</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Beery, Sara</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Mathis, Alexander</dc:contributor>
    <dc:creator>Wikelski, Martin</dc:creator>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Zuffi, Silvia</dc:creator>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Risse, Benjamin</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56536"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-14T10:28:42Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Kellenberger, Benjamin</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.</dcterms:abstract>
    <dcterms:title>Perspectives in machine learning for wildlife conservation</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56536/1/Tuia_56536.pdf"/>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dc:creator>Tuia, Devis</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56536/1/Tuia_56536.pdf"/>
    <dc:creator>Risse, Benjamin</dc:creator>
    <dc:contributor>Beery, Sara</dc:contributor>
    <dc:creator>Costelloe, Blair R.</dc:creator>
    <dc:creator>Mathis, Alexander</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Kellenberger, Benjamin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-14T10:28:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen