Publikation: Perspectives in machine learning for wildlife conservation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TUIA, Devis, Benjamin KELLENBERGER, Sara BEERY, Blair R. COSTELLOE, Silvia ZUFFI, Benjamin RISSE, Alexander MATHIS, Martin WIKELSKI, Iain D. COUZIN, Margaret C. CROFOOT, 2022. Perspectives in machine learning for wildlife conservation. In: Nature Communications. Nature Publishing Group. 2022, 13, 792. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-27980-yBibTex
@article{Tuia2022Persp-56536, year={2022}, doi={10.1038/s41467-022-27980-y}, title={Perspectives in machine learning for wildlife conservation}, volume={13}, journal={Nature Communications}, author={Tuia, Devis and Kellenberger, Benjamin and Beery, Sara and Costelloe, Blair R. and Zuffi, Silvia and Risse, Benjamin and Mathis, Alexander and Wikelski, Martin and Couzin, Iain D. and Crofoot, Margaret C.}, note={Article Number: 792} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56536"> <dc:contributor>Costelloe, Blair R.</dc:contributor> <dc:contributor>Tuia, Devis</dc:contributor> <dc:contributor>Zuffi, Silvia</dc:contributor> <dc:contributor>Crofoot, Margaret C.</dc:contributor> <dc:contributor>Wikelski, Martin</dc:contributor> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Beery, Sara</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2022</dcterms:issued> <dc:contributor>Mathis, Alexander</dc:contributor> <dc:creator>Wikelski, Martin</dc:creator> <dc:creator>Couzin, Iain D.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Zuffi, Silvia</dc:creator> <dc:creator>Crofoot, Margaret C.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Risse, Benjamin</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56536"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-14T10:28:42Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Kellenberger, Benjamin</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.</dcterms:abstract> <dcterms:title>Perspectives in machine learning for wildlife conservation</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56536/1/Tuia_56536.pdf"/> <dc:contributor>Couzin, Iain D.</dc:contributor> <dc:creator>Tuia, Devis</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56536/1/Tuia_56536.pdf"/> <dc:creator>Risse, Benjamin</dc:creator> <dc:contributor>Beery, Sara</dc:contributor> <dc:creator>Costelloe, Blair R.</dc:creator> <dc:creator>Mathis, Alexander</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kellenberger, Benjamin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-14T10:28:42Z</dc:date> </rdf:Description> </rdf:RDF>