Publikation:

A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network

Lade...
Vorschaubild

Dateien

Kress_2-1pqapp54g26sl0.pdf
Kress_2-1pqapp54g26sl0.pdfGröße: 3.66 MBDownloads: 642

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Bachelorarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this work, we utilized different approaches for solving partial differential equations with a deep neural network. The network respects the given physical laws of the equations by incorporating these constraints in the training process or in the network architecture. Specifically, a deep, feed-forward, and fully-connected neural network is used to approximate the partial differential equation, where the initial and boundary conditions are either hard or soft assigned. The resulting physics-informed surrogate model learns to satisfy the differential operator and the initial and boundary conditions and can be differentiated with respect to all input variables. The accuracy of the methods is demonstrated on multiple equations of different types and compared to either the exact or a finite element solution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Machine Learning, Partial Differential Equation, Deep Learning, Mesh-Free, Surrogate Model

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRESS, Kevin, 2020. A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network [Bachelor thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Kress2020MeshF-53305,
  year={2020},
  title={A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network},
  address={Konstanz},
  school={Universität Konstanz},
  author={Kress, Kevin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53305">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53305"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In this work, we utilized different approaches for solving partial differential equations with a deep neural network. The network respects the given physical laws of the equations by incorporating these constraints in the training process or in the network architecture. Specifically, a deep, feed-forward, and fully-connected neural network is used to approximate the partial differential equation, where the initial and boundary conditions are either hard or soft assigned. The resulting physics-informed surrogate model learns to satisfy the differential operator and the initial and boundary conditions and can be differentiated with respect to all input variables. The accuracy of the methods is demonstrated on multiple equations of different types and compared to either the exact or a finite element solution.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-30T08:27:27Z</dc:date>
    <dcterms:title>A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53305/3/Kress_2-1pqapp54g26sl0.pdf"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-30T08:27:27Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Kress, Kevin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kress, Kevin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53305/3/Kress_2-1pqapp54g26sl0.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Bachelorarbeit, 2020
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen