Publikation:

Data-Driven Synthesis of Cartoon Faces Using Different Styles

Lade...
Vorschaubild

Dateien

Zhang_0-373557.pdf
Zhang_0-373557.pdfGröße: 2.34 MBDownloads: 1112

Datum

2017

Autor:innen

Zhang, Yong
Dong, Weiming
Ma, Chongyang
Mei, Xing
Li, Ke
Huang, Feiyue
Hu, Bao-Gang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on image processing. 2017, 26(1), pp. 464-478. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/TIP.2016.2628581

Zusammenfassung

This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime synthesis step to generate the cartoon face by assembling parts from a database of stylized facial components. We propose an optimization framework that, for a given artistic style, simultaneously considers the desired image-cartoon relationships of the facial components and a proper adjustment of the image composition. We measure the similarity between facial components of the input image and our cartoon database via image feature matching, and introduce a probabilistic framework for modeling the relationships between cartoon facial components. We incorporate prior knowledge about image-cartoon relationships and the optimal composition of facial components extracted from a set of cartoon faces to maintain a natural, consistent, and attractive look of the results. We demonstrate generality and robustness of our approach by applying it to a variety of portrait images and compare our output with stylized results created by artists via a comprehensive user study

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Cartoon face, face stylization, data-driven synthesis, component-based modeling

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHANG, Yong, Weiming DONG, Chongyang MA, Xing MEI, Ke LI, Feiyue HUANG, Bao-Gang HU, Oliver DEUSSEN, 2017. Data-Driven Synthesis of Cartoon Faces Using Different Styles. In: IEEE Transactions on image processing. 2017, 26(1), pp. 464-478. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/TIP.2016.2628581
BibTex
@article{Zhang2017DataD-36075,
  year={2017},
  doi={10.1109/TIP.2016.2628581},
  title={Data-Driven Synthesis of Cartoon Faces Using Different Styles},
  number={1},
  volume={26},
  issn={1057-7149},
  journal={IEEE Transactions on image processing},
  pages={464--478},
  author={Zhang, Yong and Dong, Weiming and Ma, Chongyang and Mei, Xing and Li, Ke and Huang, Feiyue and Hu, Bao-Gang and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36075">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36075"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Dong, Weiming</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-11-25T09:24:04Z</dcterms:available>
    <dc:contributor>Ma, Chongyang</dc:contributor>
    <dc:contributor>Hu, Bao-Gang</dc:contributor>
    <dc:creator>Ma, Chongyang</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-11-25T09:24:04Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Data-Driven Synthesis of Cartoon Faces Using Different Styles</dcterms:title>
    <dc:contributor>Li, Ke</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Zhang, Yong</dc:contributor>
    <dc:creator>Huang, Feiyue</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hu, Bao-Gang</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime synthesis step to generate the cartoon face by assembling parts from a database of stylized facial components. We propose an optimization framework that, for a given artistic style, simultaneously considers the desired image-cartoon relationships of the facial components and a proper adjustment of the image composition. We measure the similarity between facial components of the input image and our cartoon database via image feature matching, and introduce a probabilistic framework for modeling the relationships between cartoon facial components. We incorporate prior knowledge about image-cartoon relationships and the optimal composition of facial components extracted from a set of cartoon faces to maintain a natural, consistent, and attractive look of the results. We demonstrate generality and robustness of our approach by applying it to a variety of portrait images and compare our output with stylized results created by artists via a comprehensive user study</dcterms:abstract>
    <dc:creator>Dong, Weiming</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Li, Ke</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36075/3/Zhang_0-373557.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Zhang, Yong</dc:creator>
    <dc:creator>Mei, Xing</dc:creator>
    <dc:contributor>Huang, Feiyue</dc:contributor>
    <dc:contributor>Mei, Xing</dc:contributor>
    <dcterms:issued>2017</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36075/3/Zhang_0-373557.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen