Publikation: Computational aspects of robust optimized certainty equivalents and option pricing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Accounting for model uncertainty in risk management and option pricing leads to infinite‐dimensional optimization problems that are both analytically and numerically intractable. In this article, we study when this hurdle can be overcome for the so‐called optimized certainty equivalent (OCE) risk measure—including the average value‐at‐risk as a special case. First, we focus on the case where the uncertainty is modeled by a nonlinear expectation that penalizes distributions that are “far” in terms of optimal‐transport distance (e.g. Wasserstein distance) from a given baseline distribution. It turns out that the computation of the robust OCE reduces to a finite‐dimensional problem, which in some cases can even be solved explicitly. This principle also applies to the shortfall risk measure as well as for the pricing of European options. Further, we derive convex dual representations of the robust OCE for measurable claims without any assumptions on the set of distributions. Finally, we give conditions on the latter set under which the robust average value‐at‐risk is a tail risk measure.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTL, Daniel, Samuel DRAPEAU, Ludovic TANGPI, 2020. Computational aspects of robust optimized certainty equivalents and option pricing. In: Mathematical Finance. Wiley. 2020, 30(1), pp. 287-309. ISSN 0960-1627. eISSN 1467-9965. Available under: doi: 10.1111/mafi.12203BibTex
@article{Bartl2020-01Compu-48304, year={2020}, doi={10.1111/mafi.12203}, title={Computational aspects of robust optimized certainty equivalents and option pricing}, number={1}, volume={30}, issn={0960-1627}, journal={Mathematical Finance}, pages={287--309}, author={Bartl, Daniel and Drapeau, Samuel and Tangpi, Ludovic} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48304"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:creator>Drapeau, Samuel</dc:creator> <dcterms:issued>2020-01</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Tangpi, Ludovic</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T10:52:40Z</dcterms:available> <dcterms:abstract xml:lang="eng">Accounting for model uncertainty in risk management and option pricing leads to infinite‐dimensional optimization problems that are both analytically and numerically intractable. In this article, we study when this hurdle can be overcome for the so‐called optimized certainty equivalent (OCE) risk measure—including the average value‐at‐risk as a special case. First, we focus on the case where the uncertainty is modeled by a nonlinear expectation that penalizes distributions that are “far” in terms of optimal‐transport distance (e.g. Wasserstein distance) from a given baseline distribution. It turns out that the computation of the robust OCE reduces to a finite‐dimensional problem, which in some cases can even be solved explicitly. This principle also applies to the shortfall risk measure as well as for the pricing of European options. Further, we derive convex dual representations of the robust OCE for measurable claims without any assumptions on the set of distributions. Finally, we give conditions on the latter set under which the robust average value‐at‐risk is a tail risk measure.</dcterms:abstract> <dc:contributor>Bartl, Daniel</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48304"/> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dc:creator>Bartl, Daniel</dc:creator> <dc:contributor>Drapeau, Samuel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T10:52:40Z</dc:date> <dcterms:title>Computational aspects of robust optimized certainty equivalents and option pricing</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>