Publikation:

Computational aspects of robust optimized certainty equivalents and option pricing

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematical Finance. Wiley. 2020, 30(1), pp. 287-309. ISSN 0960-1627. eISSN 1467-9965. Available under: doi: 10.1111/mafi.12203

Zusammenfassung

Accounting for model uncertainty in risk management and option pricing leads to infinite‐dimensional optimization problems that are both analytically and numerically intractable. In this article, we study when this hurdle can be overcome for the so‐called optimized certainty equivalent (OCE) risk measure—including the average value‐at‐risk as a special case. First, we focus on the case where the uncertainty is modeled by a nonlinear expectation that penalizes distributions that are “far” in terms of optimal‐transport distance (e.g. Wasserstein distance) from a given baseline distribution. It turns out that the computation of the robust OCE reduces to a finite‐dimensional problem, which in some cases can even be solved explicitly. This principle also applies to the shortfall risk measure as well as for the pricing of European options. Further, we derive convex dual representations of the robust OCE for measurable claims without any assumptions on the set of distributions. Finally, we give conditions on the latter set under which the robust average value‐at‐risk is a tail risk measure.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

average value-at-risk, convex duality, distribution uncertainty, optimized certainty equivalent, optimal transport, penalization, robust option pricing, Wasserstein distance

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARTL, Daniel, Samuel DRAPEAU, Ludovic TANGPI, 2020. Computational aspects of robust optimized certainty equivalents and option pricing. In: Mathematical Finance. Wiley. 2020, 30(1), pp. 287-309. ISSN 0960-1627. eISSN 1467-9965. Available under: doi: 10.1111/mafi.12203
BibTex
@article{Bartl2020-01Compu-48304,
  year={2020},
  doi={10.1111/mafi.12203},
  title={Computational aspects of robust optimized certainty equivalents and option pricing},
  number={1},
  volume={30},
  issn={0960-1627},
  journal={Mathematical Finance},
  pages={287--309},
  author={Bartl, Daniel and Drapeau, Samuel and Tangpi, Ludovic}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48304">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:creator>Drapeau, Samuel</dc:creator>
    <dcterms:issued>2020-01</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Tangpi, Ludovic</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T10:52:40Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Accounting for model uncertainty in risk management and option pricing leads to infinite‐dimensional optimization problems that are both analytically and numerically intractable. In this article, we study when this hurdle can be overcome for the so‐called optimized certainty equivalent (OCE) risk measure—including the average value‐at‐risk as a special case. First, we focus on the case where the uncertainty is modeled by a nonlinear expectation that penalizes distributions that are “far” in terms of optimal‐transport distance (e.g. Wasserstein distance) from a given baseline distribution. It turns out that the computation of the robust OCE reduces to a finite‐dimensional problem, which in some cases can even be solved explicitly. This principle also applies to the shortfall risk measure as well as for the pricing of European options. Further, we derive convex dual representations of the robust OCE for measurable claims without any assumptions on the set of distributions. Finally, we give conditions on the latter set under which the robust average value‐at‐risk is a tail risk measure.</dcterms:abstract>
    <dc:contributor>Bartl, Daniel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48304"/>
    <dc:contributor>Tangpi, Ludovic</dc:contributor>
    <dc:creator>Bartl, Daniel</dc:creator>
    <dc:contributor>Drapeau, Samuel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T10:52:40Z</dc:date>
    <dcterms:title>Computational aspects of robust optimized certainty equivalents and option pricing</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen