Publikation: Stochastic Process Methods with an Application to Budgetary Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Political scientists have increasingly focused on causal processes that operate not solely on mean differences but on other stochastic characteristics of the distribution of a dependent variable. This paper surveys important statistical tools used to assess data in situations where the entire distribution of values is of interest. We first outline three broad conditions under which stochastic process methods are applicable and show that these conditions cover many domains of social inquiry. We discuss a variety of visual and analytical techniques, including distributional analysis, direct parameter estimates of probability density functions, and quantile regression. We illustrate the utility of these statistical tools with an application to budgetary data because strong theoretical expectations at the micro- and macrolevel exist about the distributional characteristics for such data. The expository analysis concentrates on three budget series (total, domestic, and defense outlays) of the U.S. government for 1800–2004.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BREUNIG, Christian, Bryan D. JONES, 2010. Stochastic Process Methods with an Application to Budgetary Data. In: Political Analysis. 2010, 19(1), pp. 103-117. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1093/pan/mpq038BibTex
@article{Breunig2010Stoch-23161, year={2010}, doi={10.1093/pan/mpq038}, title={Stochastic Process Methods with an Application to Budgetary Data}, number={1}, volume={19}, issn={1047-1987}, journal={Political Analysis}, pages={103--117}, author={Breunig, Christian and Jones, Bryan D.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23161"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:47:44Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23161"/> <dc:language>eng</dc:language> <dcterms:issued>2010</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:47:44Z</dc:date> <dc:contributor>Jones, Bryan D.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Stochastic Process Methods with an Application to Budgetary Data</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Breunig, Christian</dc:contributor> <dc:creator>Jones, Bryan D.</dc:creator> <dcterms:abstract xml:lang="eng">Political scientists have increasingly focused on causal processes that operate not solely on mean differences but on other stochastic characteristics of the distribution of a dependent variable. This paper surveys important statistical tools used to assess data in situations where the entire distribution of values is of interest. We first outline three broad conditions under which stochastic process methods are applicable and show that these conditions cover many domains of social inquiry. We discuss a variety of visual and analytical techniques, including distributional analysis, direct parameter estimates of probability density functions, and quantile regression. We illustrate the utility of these statistical tools with an application to budgetary data because strong theoretical expectations at the micro- and macrolevel exist about the distributional characteristics for such data. The expository analysis concentrates on three budget series (total, domestic, and defense outlays) of the U.S. government for 1800–2004.</dcterms:abstract> <dc:creator>Breunig, Christian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Political Analysis ; 19 (2011), 1. - S. 103-117</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> </rdf:Description> </rdf:RDF>