Publikation:

Stochastic Process Methods with an Application to Budgetary Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Jones, Bryan D.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Analysis. 2010, 19(1), pp. 103-117. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1093/pan/mpq038

Zusammenfassung

Political scientists have increasingly focused on causal processes that operate not solely on mean differences but on other stochastic characteristics of the distribution of a dependent variable. This paper surveys important statistical tools used to assess data in situations where the entire distribution of values is of interest. We first outline three broad conditions under which stochastic process methods are applicable and show that these conditions cover many domains of social inquiry. We discuss a variety of visual and analytical techniques, including distributional analysis, direct parameter estimates of probability density functions, and quantile regression. We illustrate the utility of these statistical tools with an application to budgetary data because strong theoretical expectations at the micro- and macrolevel exist about the distributional characteristics for such data. The expository analysis concentrates on three budget series (total, domestic, and defense outlays) of the U.S. government for 1800–2004.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BREUNIG, Christian, Bryan D. JONES, 2010. Stochastic Process Methods with an Application to Budgetary Data. In: Political Analysis. 2010, 19(1), pp. 103-117. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1093/pan/mpq038
BibTex
@article{Breunig2010Stoch-23161,
  year={2010},
  doi={10.1093/pan/mpq038},
  title={Stochastic Process Methods with an Application to Budgetary Data},
  number={1},
  volume={19},
  issn={1047-1987},
  journal={Political Analysis},
  pages={103--117},
  author={Breunig, Christian and Jones, Bryan D.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23161">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:47:44Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23161"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2010</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:47:44Z</dc:date>
    <dc:contributor>Jones, Bryan D.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Stochastic Process Methods with an Application to Budgetary Data</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Breunig, Christian</dc:contributor>
    <dc:creator>Jones, Bryan D.</dc:creator>
    <dcterms:abstract xml:lang="eng">Political scientists have increasingly focused on causal processes that operate not solely on mean differences but on other stochastic characteristics of the distribution of a dependent variable. This paper surveys important statistical tools used to assess data in situations where the entire distribution of values is of interest. We first outline three broad conditions under which stochastic process methods are applicable and show that these conditions cover many domains of social inquiry. We discuss a variety of visual and analytical techniques, including distributional analysis, direct parameter estimates of probability density functions, and quantile regression. We illustrate the utility of these statistical tools with an application to budgetary data because strong theoretical expectations at the micro- and macrolevel exist about the distributional characteristics for such data. The expository analysis concentrates on three budget series (total, domestic, and defense outlays) of the U.S. government for 1800–2004.</dcterms:abstract>
    <dc:creator>Breunig, Christian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Political Analysis ; 19 (2011), 1. - S. 103-117</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen