Publikation:

Body talk : crowdshaping realistic 3D avatars with words

Lade...
Vorschaubild

Dateien

Streuber_2-1q83u4bskzuzx6.pdf
Streuber_2-1q83u4bskzuzx6.pdfGröße: 31.97 MBDownloads: 421

Datum

2016

Autor:innen

Quiros-Ramirez, M. Alejandra
Hill, Matthew Q.
Zuffi, Silvia
O'Toole, Alice
Black, Michael J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Graphics. 2016, 35(4), 54. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/2897824.2925981

Zusammenfassung

Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body "scanning" practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STREUBER, Stephan, M. Alejandra QUIROS-RAMIREZ, Matthew Q. HILL, Carina A. HAHN, Silvia ZUFFI, Alice O'TOOLE, Michael J. BLACK, 2016. Body talk : crowdshaping realistic 3D avatars with words. In: ACM Transactions on Graphics. 2016, 35(4), 54. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/2897824.2925981
BibTex
@article{Streuber2016-07-11crowd-43403,
  year={2016},
  doi={10.1145/2897824.2925981},
  title={Body talk : crowdshaping realistic 3D avatars with words},
  number={4},
  volume={35},
  issn={0730-0301},
  journal={ACM Transactions on Graphics},
  author={Streuber, Stephan and Quiros-Ramirez, M. Alejandra and Hill, Matthew Q. and Hahn, Carina A. and Zuffi, Silvia and O'Toole, Alice and Black, Michael J.},
  note={Article Number: 54}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43403">
    <dcterms:title>Body talk : crowdshaping realistic 3D avatars with words</dcterms:title>
    <dc:creator>Zuffi, Silvia</dc:creator>
    <dc:creator>Quiros-Ramirez, M. Alejandra</dc:creator>
    <dc:contributor>Zuffi, Silvia</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-01T08:30:34Z</dc:date>
    <dcterms:issued>2016-07-11</dcterms:issued>
    <dc:creator>Hahn, Carina A.</dc:creator>
    <dc:contributor>Hill, Matthew Q.</dc:contributor>
    <dc:creator>Hill, Matthew Q.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Streuber, Stephan</dc:creator>
    <dc:creator>Black, Michael J.</dc:creator>
    <dc:contributor>O'Toole, Alice</dc:contributor>
    <dc:contributor>Hahn, Carina A.</dc:contributor>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dc:contributor>Quiros-Ramirez, M. Alejandra</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43403"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Streuber, Stephan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43403/1/Streuber_2-1q83u4bskzuzx6.pdf"/>
    <dcterms:abstract xml:lang="eng">Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body "scanning" practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-01T08:30:34Z</dcterms:available>
    <dc:contributor>Black, Michael J.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dc:creator>O'Toole, Alice</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43403/1/Streuber_2-1q83u4bskzuzx6.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen