Publikation:

Exploring biological data : Mappings between ontology- and cluster-based representations

Lade...
Vorschaubild

Dateien

Jusufi_0-395783.pdf
Jusufi_0-395783.pdfGröße: 1.42 MBDownloads: 304

Datum

2013

Autor:innen

Jusufi, Ilir
Kerren, Andreas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Visualization. 2013, 12(3-4), pp. 291-307. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871612468880

Zusammenfassung

Ontologies and hierarchical clustering are both important tools in biology and medicine to study high-throughput data such as transcriptomics and metabolomics data. Enrichment of ontology terms in the data is used to identify statistically overrepresented ontology terms, giving insight into relevant biological processes or functional modules. Hierarchical clustering is a standard method to analyze and visualize data to find relatively homogeneous clusters of experimental data points. Both methods support the analysis of the same data set but are usually considered independently. However, often a combined view is desired: visualizing a large data set in the context of an ontology under consideration of a clustering of the data. This article proposes new visualization methods for this task. They allow for interactive selection and navigation to explore the data under consideration as well as visual analysis of mappings between ontology- and cluster-based space-filling representations. In this context, we discuss our approach together with specific properties of the biological input data and identify features that make our approach easily usable for domain experts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JUSUFI, Ilir, Andreas KERREN, Falk SCHREIBER, 2013. Exploring biological data : Mappings between ontology- and cluster-based representations. In: Information Visualization. 2013, 12(3-4), pp. 291-307. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871612468880
BibTex
@article{Jusufi2013-07-29Explo-38244,
  year={2013},
  doi={10.1177/1473871612468880},
  title={Exploring biological data : Mappings between ontology- and cluster-based representations},
  number={3-4},
  volume={12},
  issn={1473-8716},
  journal={Information Visualization},
  pages={291--307},
  author={Jusufi, Ilir and Kerren, Andreas and Schreiber, Falk}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38244">
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kerren, Andreas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-31T09:50:17Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38244/1/Jusufi_0-395783.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38244/1/Jusufi_0-395783.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-31T09:50:17Z</dc:date>
    <dc:creator>Jusufi, Ilir</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Exploring biological data : Mappings between ontology- and cluster-based representations</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38244"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Jusufi, Ilir</dc:contributor>
    <dcterms:issued>2013-07-29</dcterms:issued>
    <dc:creator>Schreiber, Falk</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kerren, Andreas</dc:contributor>
    <dcterms:abstract xml:lang="eng">Ontologies and hierarchical clustering are both important tools in biology and medicine to study high-throughput data such as transcriptomics and metabolomics data. Enrichment of ontology terms in the data is used to identify statistically overrepresented ontology terms, giving insight into relevant biological processes or functional modules. Hierarchical clustering is a standard method to analyze and visualize data to find relatively homogeneous clusters of experimental data points. Both methods support the analysis of the same data set but are usually considered independently. However, often a combined view is desired: visualizing a large data set in the context of an ontology under consideration of a clustering of the data. This article proposes new visualization methods for this task. They allow for interactive selection and navigation to explore the data under consideration as well as visual analysis of mappings between ontology- and cluster-based space-filling representations. In this context, we discuss our approach together with specific properties of the biological input data and identify features that make our approach easily usable for domain experts.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen