Publikation:

An alternative way to model population ability distributions in large-scale educational surveys

Lade...
Vorschaubild

Dateien

Wetzel_0-292556.pdf
Wetzel_0-292556.pdfGröße: 151.13 KBDownloads: 221

Datum

2015

Autor:innen

Xu, Xueli
von Davier, Matthias

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Educational and Psychological Measurement. 2015, 75(5), pp. 739-763. ISSN 0013-1644. eISSN 1552-3888. Available under: doi: 10.1177/0013164414558843

Zusammenfassung

In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and the high model complexity. The approach introduced here to identify multiple groups that can account for the variation among students is to conduct a latent class analysis (LCA). In the LCA, one or more latent nominal variables are identified that can be used to classify respondents with respect to their background characteristics. These classifications are then introduced as predictors in the latent regression. The primary goal of this study was to explore whether this approach yields similar estimates of group means and standard deviations compared with the operational procedure. The alternative approaches based on LCA differed regarding the number of classes, the items used for the LCA, and whether manifest class membership information or class membership probabilities were used as independent variables in the latent regression. Overall, recovery of the operational approach’s group means and standard deviations was very satisfactory for all LCA approaches. Furthermore, the posterior means and standard deviations used to generate plausible values derived from the operational approach and the LCA approaches correlated highly. Thus, incorporating independent variables based on an LCA of background data into the latent regression model appears to be a viable alternative to the operational approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

latent classification, large-scale educational surveys, latent class analysis, latent regression model

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WETZEL, Eunike, Xueli XU, Matthias VON DAVIER, 2015. An alternative way to model population ability distributions in large-scale educational surveys. In: Educational and Psychological Measurement. 2015, 75(5), pp. 739-763. ISSN 0013-1644. eISSN 1552-3888. Available under: doi: 10.1177/0013164414558843
BibTex
@article{Wetzel2015alter-31207,
  year={2015},
  doi={10.1177/0013164414558843},
  title={An alternative way to model population ability distributions in large-scale educational surveys},
  number={5},
  volume={75},
  issn={0013-1644},
  journal={Educational and Psychological Measurement},
  pages={739--763},
  author={Wetzel, Eunike and Xu, Xueli and von Davier, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31207">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31207/1/Wetzel_0-292556.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Wetzel, Eunike</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-19T06:43:06Z</dcterms:available>
    <dc:contributor>von Davier, Matthias</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>An alternative way to model population ability distributions in large-scale educational surveys</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-19T06:43:06Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31207"/>
    <dc:creator>Xu, Xueli</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>von Davier, Matthias</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31207/1/Wetzel_0-292556.pdf"/>
    <dc:contributor>Xu, Xueli</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:abstract xml:lang="eng">In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and the high model complexity. The approach introduced here to identify multiple groups that can account for the variation among students is to conduct a latent class analysis (LCA). In the LCA, one or more latent nominal variables are identified that can be used to classify respondents with respect to their background characteristics. These classifications are then introduced as predictors in the latent regression. The primary goal of this study was to explore whether this approach yields similar estimates of group means and standard deviations compared with the operational procedure. The alternative approaches based on LCA differed regarding the number of classes, the items used for the LCA, and whether manifest class membership information or class membership probabilities were used as independent variables in the latent regression. Overall, recovery of the operational approach’s group means and standard deviations was very satisfactory for all LCA approaches. Furthermore, the posterior means and standard deviations used to generate plausible values derived from the operational approach and the LCA approaches correlated highly. Thus, incorporating independent variables based on an LCA of background data into the latent regression model appears to be a viable alternative to the operational approach.</dcterms:abstract>
    <dc:contributor>Wetzel, Eunike</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen