Publikation: An alternative way to model population ability distributions in large-scale educational surveys
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and the high model complexity. The approach introduced here to identify multiple groups that can account for the variation among students is to conduct a latent class analysis (LCA). In the LCA, one or more latent nominal variables are identified that can be used to classify respondents with respect to their background characteristics. These classifications are then introduced as predictors in the latent regression. The primary goal of this study was to explore whether this approach yields similar estimates of group means and standard deviations compared with the operational procedure. The alternative approaches based on LCA differed regarding the number of classes, the items used for the LCA, and whether manifest class membership information or class membership probabilities were used as independent variables in the latent regression. Overall, recovery of the operational approach’s group means and standard deviations was very satisfactory for all LCA approaches. Furthermore, the posterior means and standard deviations used to generate plausible values derived from the operational approach and the LCA approaches correlated highly. Thus, incorporating independent variables based on an LCA of background data into the latent regression model appears to be a viable alternative to the operational approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WETZEL, Eunike, Xueli XU, Matthias VON DAVIER, 2015. An alternative way to model population ability distributions in large-scale educational surveys. In: Educational and Psychological Measurement. 2015, 75(5), pp. 739-763. ISSN 0013-1644. eISSN 1552-3888. Available under: doi: 10.1177/0013164414558843BibTex
@article{Wetzel2015alter-31207, year={2015}, doi={10.1177/0013164414558843}, title={An alternative way to model population ability distributions in large-scale educational surveys}, number={5}, volume={75}, issn={0013-1644}, journal={Educational and Psychological Measurement}, pages={739--763}, author={Wetzel, Eunike and Xu, Xueli and von Davier, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31207"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31207/1/Wetzel_0-292556.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Wetzel, Eunike</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-19T06:43:06Z</dcterms:available> <dc:contributor>von Davier, Matthias</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dcterms:title>An alternative way to model population ability distributions in large-scale educational surveys</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-19T06:43:06Z</dc:date> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31207"/> <dc:creator>Xu, Xueli</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>von Davier, Matthias</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31207/1/Wetzel_0-292556.pdf"/> <dc:contributor>Xu, Xueli</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:abstract xml:lang="eng">In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and the high model complexity. The approach introduced here to identify multiple groups that can account for the variation among students is to conduct a latent class analysis (LCA). In the LCA, one or more latent nominal variables are identified that can be used to classify respondents with respect to their background characteristics. These classifications are then introduced as predictors in the latent regression. The primary goal of this study was to explore whether this approach yields similar estimates of group means and standard deviations compared with the operational procedure. The alternative approaches based on LCA differed regarding the number of classes, the items used for the LCA, and whether manifest class membership information or class membership probabilities were used as independent variables in the latent regression. Overall, recovery of the operational approach’s group means and standard deviations was very satisfactory for all LCA approaches. Furthermore, the posterior means and standard deviations used to generate plausible values derived from the operational approach and the LCA approaches correlated highly. Thus, incorporating independent variables based on an LCA of background data into the latent regression model appears to be a viable alternative to the operational approach.</dcterms:abstract> <dc:contributor>Wetzel, Eunike</dc:contributor> </rdf:Description> </rdf:RDF>