Publikation:

Extended Laplace principle for empirical measures of a Markov chain

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Applied Probability. 2019, 51(1), pp. 136-167. ISSN 0001-8678. eISSN 1475-6064. Available under: doi: 10.1017/apr.2019.6

Zusammenfassung

We consider discrete-time Markov chains with Polish state space. The large deviations principle for empirical measures of a Markov chain can equivalently be stated in Laplace principle form, which builds on the convex dual pair of relative entropy (or Kullback– Leibler divergence) and cumulant generating functional f ↦ ln ʃ exp (f). Following the approach by Lacker (2016) in the independent and identically distributed case, we generalize the Laplace principle to a greater class of convex dual pairs. We present in depth one application arising from this extension, which includes large deviation results and a weak law of large numbers for certain robust Markov chains—similar to Markov set chains—where we model robustness via the first Wasserstein distance. The setting and proof of the extended Laplace principle are based on the weak convergence approach to large deviations by Dupuis and Ellis (2011).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ECKSTEIN, Stephan, 2019. Extended Laplace principle for empirical measures of a Markov chain. In: Advances in Applied Probability. 2019, 51(1), pp. 136-167. ISSN 0001-8678. eISSN 1475-6064. Available under: doi: 10.1017/apr.2019.6
BibTex
@article{Eckstein2019Exten-47128,
  year={2019},
  doi={10.1017/apr.2019.6},
  title={Extended Laplace principle for empirical measures of a Markov chain},
  number={1},
  volume={51},
  issn={0001-8678},
  journal={Advances in Applied Probability},
  pages={136--167},
  author={Eckstein, Stephan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47128">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-07T13:57:34Z</dcterms:available>
    <dc:contributor>Eckstein, Stephan</dc:contributor>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Eckstein, Stephan</dc:creator>
    <dcterms:abstract xml:lang="eng">We consider discrete-time Markov chains with Polish state space. The large deviations principle for empirical measures of a Markov chain can equivalently be stated in Laplace principle form, which builds on the convex dual pair of relative entropy (or Kullback– Leibler divergence) and cumulant generating functional f ↦ ln ʃ exp (f). Following the approach by Lacker (2016) in the independent and identically distributed case, we generalize the Laplace principle to a greater class of convex dual pairs. We present in depth one application arising from this extension, which includes large deviation results and a weak law of large numbers for certain robust Markov chains—similar to Markov set chains—where we model robustness via the first Wasserstein distance. The setting and proof of the extended Laplace principle are based on the weak convergence approach to large deviations by Dupuis and Ellis (2011).</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-07T13:57:34Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Extended Laplace principle for empirical measures of a Markov chain</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47128"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen