Publikation: Extended Laplace principle for empirical measures of a Markov chain
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider discrete-time Markov chains with Polish state space. The large deviations principle for empirical measures of a Markov chain can equivalently be stated in Laplace principle form, which builds on the convex dual pair of relative entropy (or Kullback– Leibler divergence) and cumulant generating functional f ↦ ln ʃ exp (f). Following the approach by Lacker (2016) in the independent and identically distributed case, we generalize the Laplace principle to a greater class of convex dual pairs. We present in depth one application arising from this extension, which includes large deviation results and a weak law of large numbers for certain robust Markov chains—similar to Markov set chains—where we model robustness via the first Wasserstein distance. The setting and proof of the extended Laplace principle are based on the weak convergence approach to large deviations by Dupuis and Ellis (2011).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ECKSTEIN, Stephan, 2019. Extended Laplace principle for empirical measures of a Markov chain. In: Advances in Applied Probability. 2019, 51(1), pp. 136-167. ISSN 0001-8678. eISSN 1475-6064. Available under: doi: 10.1017/apr.2019.6BibTex
@article{Eckstein2019Exten-47128,
year={2019},
doi={10.1017/apr.2019.6},
title={Extended Laplace principle for empirical measures of a Markov chain},
number={1},
volume={51},
issn={0001-8678},
journal={Advances in Applied Probability},
pages={136--167},
author={Eckstein, Stephan}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47128">
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-07T13:57:34Z</dcterms:available>
<dc:contributor>Eckstein, Stephan</dc:contributor>
<dcterms:issued>2019</dcterms:issued>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:creator>Eckstein, Stephan</dc:creator>
<dcterms:abstract xml:lang="eng">We consider discrete-time Markov chains with Polish state space. The large deviations principle for empirical measures of a Markov chain can equivalently be stated in Laplace principle form, which builds on the convex dual pair of relative entropy (or Kullback– Leibler divergence) and cumulant generating functional f ↦ ln ʃ exp (f). Following the approach by Lacker (2016) in the independent and identically distributed case, we generalize the Laplace principle to a greater class of convex dual pairs. We present in depth one application arising from this extension, which includes large deviation results and a weak law of large numbers for certain robust Markov chains—similar to Markov set chains—where we model robustness via the first Wasserstein distance. The setting and proof of the extended Laplace principle are based on the weak convergence approach to large deviations by Dupuis and Ellis (2011).</dcterms:abstract>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-07T13:57:34Z</dc:date>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:language>eng</dc:language>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:title>Extended Laplace principle for empirical measures of a Markov chain</dcterms:title>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47128"/>
</rdf:Description>
</rdf:RDF>